[学习笔记]快速幂&&快速乘
本质:二进制拆分(你说倍增我也没脾气)。然后是一个配凑。
合起来就是边二进制拆分,边配凑。
快速乘(其实龟速):把乘数二进制拆分。利用乘法分配率。
用途:防止爆long long
代码:
ll qk(ll x,ll y,ll mod){
ll ret=;
while(y){
if(y&) (ret+=x)%=mod;
(x+=x)%=mod;
y>>=;
}
return ret;
}
如果为了卡常,可以写成这样:
ll qk(ll x,ll y,ll mod){
ll ret=;
x%=mod;y%=mod;
while(y){
if(y&) ret=ret+x>=mod?ret+x-mod:ret+x;
x=x+x>=mod?x+x-mod:x+x;
y>>=;
}
return ret;
}
第一行必须有x%=mod,y%=mod,否则开始x,y可能很大,减一次mod不能减到mod以下。
还是错过几次。。。
(有时候卡这个取模还是挺有效的。)
快速幂(真的快速):把指数二进制拆分。利用:a^(x+y)=a^x*a^y
用途:各种指数运算,一般还取模。
推广:矩阵快速幂。
代码略。
快速幂经常与快速乘结合。log^2n也是可以接受的。
例题:
直接推式子,然后分治求等比数列,爆long long,要快速乘。
复杂度:O(log^3n)
upda:2018.10.12
你以为快速幂就这么简单???
其实可以更有趣一些。
与其说快速幂本质是二进制拆分,不如说是进制拆分。
因为,我们可以10进制快速幂!!!
应用于高精快速幂。
因为/2是O(len)的,除法复杂度太高 。
而如果高精用10进制存储,可以10进制快速幂!!每次干掉低位,类比于二进制下的左移和右移。
复杂度也是logn的。奇技淫巧第24条。
快速幂快吗?很快。但是还是logn的。
如果要多次进行快速幂,那么每次logn的复杂度可能还是不能接受。
我们根据拆分的思想,如果指数在1e9范围内,那么A^k=A^([k/1e4]*1e4+k%1e4)=A^([k/1e4]*1e4)*A^(k%1e4)
可以尝试根号预处理。
upda:2019.1.19
延伸一下
分块预处理,可以称之为“光速幂”
然后块速递推
[学习笔记]快速幂&&快速乘的更多相关文章
- 「学习笔记」FFT 快速傅里叶变换
目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...
- 取模性质,快速幂,快速乘,gcd和最小公倍数
一.取模运算 取模(取余)运算法则: 1. (a+b)%p=(a%p+b%p)%p; 2.(a-b)%p=(a%p-b%p)%p; 3.(a*b)%p=(a%p * b%p)%p; 4.(a^b)%p ...
- HDU 4549 矩阵快速幂+快速幂+欧拉函数
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- [学习笔记] 多项式与快速傅里叶变换(FFT)基础
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...
- ACM:a^b%p-数论-快速幂-快速乘
a^b Time Limit: 1000MS Memory Limit: 65535KB 64bit IO Format: Description 求a的b次方,取模mod(1<=a,b ...
- BZOJ-2326 数学作业 矩阵乘法快速幂+快速乘
2326: [HNOI2011]数学作业 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1564 Solved: 910 [Submit][Statu ...
- BZOJ-2875 随机数生成器 矩阵乘法快速幂+快速乘
题目没给全,吃X了... 2875: [Noi2012]随机数生成器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 1479 Solved: 829 ...
- HDU 5607 graph 矩阵快速幂 + 快速幂
这道题得到了学长的助攻,其实就是一个马尔科夫链,算出一步转移矩阵进行矩阵快速幂就行了,无奈手残 这是我第一回写矩阵快速幂,写的各种毛病,等到调完了已经8点44了,交了一发,返回PE,(发现是少了换行) ...
- 快速幂&快速乘法
尽管快速幂与快速乘法好像扯不上什么关系,但是东西不是很多,就一起整理到这里吧 快速幂思想就是将ax看作x个a相乘,用now记录当前答案,然后将指数每次除以2,然后将当前答案平方,如果x的2进制最后一位 ...
随机推荐
- 学习HTML 第一节.小试牛刀
此贴并非教学,主要是自学笔记,所述内容只是些许个人学习心得的记录和备查积累,难以保证观点正确,也不一定能坚持完成. 如不幸到访,可能耽误您的时间,也难及时回复,贴主先此致歉.如偶有所得,相逢有缘,幸甚 ...
- selenium+Java,xpath定位方法详解(搬运留存)
用xpath绝对路径比较费事费力,还容易报错,下面几种模糊定位比较灵活好用 driver.findElement(By.xpath("//*[@id='J_login_form']/dl/d ...
- android 签名相关
查看keystorekeytool -list -v -keystore debug.keystoreapk签名不带别名 apksigner sign --ks debug.keystore test ...
- 【数据结构系列】线段树(Segment Tree)
一.线段树的定义 线段树,又名区间树,是一种二叉搜索树. 那么问题来了,啥是二叉搜索树呢? 对于一棵二叉树,若满足: ①它的左子树不空,则左子树上所有结点的值均小于它的根结点的值 ②若它的右子树不空, ...
- 使用Firebug或chrome-devToolBar深入学习javascript语言核心
使用Firebug和chrome-devToolBar调试页面样式或脚本是前端开发每天必做之事.这个开发神器到底能给我们带来哪些更神奇的帮助呢?这几天看的一些资料中给了我启发,能不通过Firebug和 ...
- How to pass an Amazon account review
Have you ever sold products on Amazon? How about sold so much within the first week that amazon deci ...
- Alpha 冲刺9
队名:日不落战队 安琪(队长) 今天完成的任务 协助开发手写涂鸦demo. okhttp学习第三弹. 明天的计划 协助开发语音存储demo. 还剩下的任务 个人信息数据get. 遇到的困难 困难:整理 ...
- caffe神经网络模型的绘图
Python/draw_net.py, 这个文件,就是用来绘制网络模型的.也就是将网络模型由prototxt变成一张图片. 1.安装GraphViz # sudo apt-get install Gr ...
- CentOS7安装.NET Core运行环境
安装.NET Core ->首先需要删除以前安装的版本 -> 获取安装脚本 curl -sSL https://raw.githubusercontent.com/dotnet/cli/r ...
- C#和Java访问修饰符的比较
访问修饰符对于C#:类 的默认修饰符是 internal(外部类只能被public / internal 修饰)枚举 的默认修饰符是 public 且此类型不允许其它访问修饰符接口 的默认修饰符是 i ...