LG2831 愤怒的小鸟
题意

分析
看n的范围只有18,考虑状压dp。
用\(f(s)\)表示过集合s中的点所需最小的抛物线数量。
然后枚举点对算抛物线,判断其他点是否在抛物线上来转移。
细节
判断能否构成抛物线只需要判断斜率关系,具体来说是
\]
判断三点是否在同一抛物线上,考虑方程
\begin{array}{}
a x_i^2 + bx_i & = & y_i \\
a x_j^2 + bx_j & = & y_j \\
a x_k^2 + bx_k & = & y_k \\
\end{array}
\right.
\]
有解的条件是矩阵
\begin{matrix}
x_i^2 & x_i & y_i \\
x_j^2 & x_j & y_j \\
x_k^2 & x_k & y_k
\end{matrix}
\right]
\]
线性相关,只需行列式为0。(B君太优秀了。)
代码
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<string>
#include<vector>
#include<list>
#include<deque>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<complex>
#define rg register
#define il inline
#define co const
#pragma GCC optimize ("O0")
using namespace std;
template<class T> il T read(rg T&x)
{
rg T data=0;
rg int w=1;
rg char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
w=-1;
ch=getchar();
}
while(isdigit(ch))
data=10*data+ch-'0',ch=getchar();
return x=data*w;
}
typedef long long ll;
const int INF=0x7fffffff;
const int MAXN=20;
int n,m,ms;
ll x[MAXN],y[MAXN];
int f[1<<MAXN|7];
il void update(rg co int&x)
{
for(rg int i=0;i<=ms;++i)
{
f[i|x]=min(f[i|x],f[i]+1);
// cerr<<(i|x)<<" f="<<f[i|x]<<" fi+1="<<f[i]+1<<" min="<<min(f[i|x],f[i]+1)<<endl;
}
}
il bool in(rg co int&i,rg co int&j,rg co int&k)
{
rg ll det=0;
det += x[i] * x[i] * x[j] * y[k];
det += x[i] * y[j] * x[k] * x[k];
det += y[i] * x[j] * x[j] * x[k];
det -= y[i] * x[j] * x[k] * x[k];
det -= x[i] * x[j] * x[j] * y[k];
det -= x[i] * x[i] * y[j] * x[k];
return det==0;
}
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
rg int T;
read(T);
while(T--)
{
memset(f,0x3f,sizeof f);
f[0]=0; // edit 1:the init of f
read(n);read(m);
ms=(1<<n)-1;
for(rg int i=0;i<n;++i)
{
rg double xi,yi;
scanf("%lf %lf",&xi,&yi);
x[i] = ll(100 * xi + 0.5);
y[i] = ll(100 * yi + 0.5);
// cerr<<i<<" x="<<x[i]<<" y="<<y[i]<<endl;
}
for(rg int i=0;i<n;++i)
{
update(1<<i);
for(rg int j=0;j<n;++j)
if(x[j] > x[i] && y[i] * (x[j] - x[i]) > x[i] * (y[j] - y[i]))
{
rg int s=(1<<i)|(1<<j);
for(rg int k=0;k<n;++k)
if(in(i,j,k))
s|=(1<<k);
// cerr<<i<<" "<<j<<" s="<<s<<endl;
update(s);
}
}
/* for(int i=0;i<1<<n;++i)
cerr<<i<<" f="<<f[i]<<endl;*/
printf("%d\n",f[ms]);
}
// fclose(stdin);
// fclose(stdout);
return 0;
}
LG2831 愤怒的小鸟的更多相关文章
- [NOIP2016]愤怒的小鸟 D2 T3 状压DP
[NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...
- 基于html5实现的愤怒的小鸟网页游戏
之前给大家分享一款基于html5 canvas和js实现的水果忍者网页版,今天给大家分享一款基于html5实现的愤怒的小鸟网页游戏.这款游戏适用浏览器:360.FireFox.Chrome.Safar ...
- [luogu2831][noip d2t3]愤怒的小鸟_状压dp
愤怒的小鸟 noip-d2t3 luogu-2831 题目大意:给你n个点,问最少需要多少条经过原点的抛物线将其覆盖. 注释:1<=点数<=18,1<=数据组数<=30.且规定 ...
- 洛谷P2831 愤怒的小鸟 + 篮球比赛1 2
这三道题一起做,有一点心得吧. 愤怒的小鸟,一眼看上去是爆搜,但是实现起来有困难(我打了0分出来). 还有一种解法是状压DP. 抛物线一共只有那么多条,我们枚举抛物线(枚举两个点),这样就能够预处理出 ...
- Unity3D笔记 愤怒的小鸟<二> 实现Play界面
创建Play界面.能个把各个图片组合成一个场景,场景组成后背景能够不停的滚动,当鼠标单击时显示图片手型鼠标 一.GUI Texture 1.创建背景.地面.树木.草 ,这里注意Z轴的排序,一层一层则第 ...
- Unity3D笔记 愤怒的小鸟<一>场景切换
新建3个场景,场景1 Start 十秒后自动切换到场景2 Splash,场景2在二秒后自动切换到场景3 Selection 一.场景一Start 二.场景2 Splash 三.场景3 Selectio ...
- Unity3D游戏-愤怒的小鸟游戏源码和教程(二)
Unity愤怒的小鸟游戏教程(二) 本文提供全流程,中文翻译.Chinar坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) AngryEva游戏效果 ...
- Unity3D游戏-愤怒的小鸟游戏源码和教程(一)
Unity愤怒的小鸟游戏教程 本文提供全流程,中文翻译.Chinar坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) AngryEva游戏效果: 1 ...
- 【NOIP2016提高组】 Day2 T3 愤怒的小鸟
题目传送门:https://www.luogu.org/problemnew/show/P2831 说个题外话:NOIP2014也有一道题叫做愤怒的小鸟. 这题自测时算错了eps,导致被卡了精度,从1 ...
随机推荐
- Hello 2019 Solution
A. Gennady and a Card Game 签到. #include <bits/stdc++.h> using namespace std; ], t[]; bool solv ...
- 能否通过六面照片构建3D模型?比如人脸,全身的多角度照片,生成3D模型。?
https://www.zhihu.com/question/36412840 9023 添加评论 分享 邀请回答举报 收起 已关注写回答 9 个回答 默认排序 叛逆者 计算机图形学 ...
- Ubuntu安装 jdk.rpm 报错问题解决
报错问题出现原因 第一次使用Ubuntu操作系统,很多命令及软件安装方式与以往使用的Linux操作系统(CentOS)有很大区别.现在总结使用Ubuntu在安装JDK中,遇到的问题及解决方法. roo ...
- 配置zbar识别二维码(转载)
原文地址:http://blog.csdn.net/dcrmg/article/details/52108258 二维码解码器Zbar+VS2012开发环境配置 Zbar条码解码器是一个开源的二维码 ...
- Hadoop运维手记
1.处理hadoop的namenode宕机 处理措施:进入hadoop的bin目录,重启namenode服务 操作命令:cd path/to/hadoop/bin ./hadoop-daemon.sh ...
- openwrt生成的交叉编译器在哪里
答:在staging_dir目录下,示例如下: 编译一个arm64架构所生成的编译器在staging_dir/toolchain-aarch64_generic_gcc-7.4.0_musl/bin/ ...
- Spring Boot与数据
SpringBoot 着眼于JavaEE! 不仅仅局限于 Mybatis .JDBC. Spring Data JPA Spring Data 项目的目的是为了简化构建基于 Spring 框架应用的数 ...
- 重塑 data.table
在前面的章节中,我们已经学习了如何使用 reshape2 扩展包对 data.frame 进行塑形.其实,data.table 扩展包为 data.table 对象提供了更快更强的 dcast( ) ...
- 【安全测试】安全测试威胁建模设计方法STRIDE
背景 目前安全测试一般都存在如下问题: 安全测试人员不懂业务,业务测试人员不懂安全,安全测试设计出现遗漏是无法避免的 安全测试点繁多复杂,单点分析会导致风险暴露,不安全 目前的状态: TR2阶段测试人 ...
- 【SQL Server高可用性】数据库复制:SQL Server 2008R2中数据库复制
经常在论坛中看到有人问数据同步的技术,如果只是同步少量的表,那么可以考虑使用链接服务器+触发器,来实现数据同步,但当要同步的数据表比较多,那么可以考虑用数据库复制技术,来实现数据的同步. 一.使用场景 ...