Linux内核分析 第二周 操作系统是如何工作的


张嘉琪 原创作品转载请注明出处 《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000

一、函数调用堆栈

  • 计算机工作的三个法宝
  1. 存储程序计算机
  2. 中断机制
  3. 堆栈

二、借助Linux内核部分源代码模拟存储程序计算机工作模型及时钟中断

  • mykernel实验指导(操作系统是如何工作的)

运行并分析一个精简的操作系统内核,理解操作系统是如何工作的

使用实验楼的虚拟机打开shell

cd LinuxKernel/linux-3.9.4
qemu -kernel arch/x86/boot/bzImage

然后cd mykernel ,可以看到qemu窗口输出的内容的代码mymain.c和myinterrupt.c

  • 实验源代码

进程的启动和进程的切换机制分析见注释

mypcb.h

 1 /*
2 * linux/mykernel/mypcb.h
3 *
4 * Kernel internal PCB types
5 *
6 * Copyright (C) 2013 Mengning
7 *
8 */
9
10 #define MAX_TASK_NUM 4
11 #define KERNEL_STACK_SIZE 1024*8
12
13 /* CPU-specific state of this task */
14 struct Thread {
15 unsigned long ip;
16 unsigned long sp;
17 };
18
19 typedef struct PCB{
20 int pid; //定义进程的ID
21 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ //定义进程的状态
22 char stack[KERNEL_STACK_SIZE]; //建立搭建进程的堆栈
23 /* CPU-specific state of this task */
24 struct Thread thread;
25 unsigned long task_entry; //task_entry指定入口
26 struct PCB *next; //将进程用链表链接起来
27 }tPCB;
28
29 void my_schedule(void);//调度器
 

mymain.c

 1 /*
2 * linux/mykernel/mymain.c
3 *
4 * Kernel internal my_start_kernel
5 *
6 * Copyright (C) 2013 Mengning
7 *
8 */
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/ctype.h>
12 #include <linux/tty.h>
13 #include <linux/vmalloc.h>
14
15
16 #include "mypcb.h"
17
18 tPCB task[MAX_TASK_NUM]; //声明一个PCB的数组
19 tPCB * my_current_task = NULL;
20 volatile int my_need_sched = 0; 是否需要调度
21
22 void my_process(void);
23
24
25 void __init my_start_kernel(void)
26 {
27 int pid = 0;
28 int i;
29 /* Initialize process 0*/ //初始化0号进程的数据结构
30 task[pid].pid = pid; // 进程id
31 task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */ //进程状态
32 task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; //进程入口
33 task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];//堆栈的栈顶
34 task[pid].next = &task[pid]; //next指向自己
35 /*fork more process */ //将新fork的进程放到进程列表的尾部
36 for(i=1;i<MAX_TASK_NUM;i++)
37 {
38 memcpy(&task[i],&task[0],sizeof(tPCB));
39 task[i].pid = i;
40 task[i].state = -1;
41 task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
42 task[i].next = task[i-1].next;
43 task[i-1].next = &task[i];
44 }
45 /* start process 0 by task[0] */ //启动0号进程
46 pid = 0;
47 my_current_task = &task[pid];
48 asm volatile(
49 "movl %1,%%esp\n\t" /* set task[pid].thread.sp to esp */ //%1 ->thread.sp
50 "pushl %1\n\t" /* push ebp */
51 "pushl %0\n\t" /* push task[pid].thread.ip */
52 "ret\n\t" /* pop task[pid].thread.ip to eip */
53 "popl %%ebp\n\t"
54 :
55 : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/
56 );
57 }
58 void my_process(void)
59 {
60 int i = 0;
61 while(1)
62 {
63 i++;
64 if(i%10000000 == 0)
65 {
66 printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
67 if(my_need_sched == 1)
68 {
69 my_need_sched = 0;
70 my_schedule();
71 }
72 printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
73 }
74 }
75 } /*0号进程的堆栈和0号进程的入口构建完成,my_start_kernel工作完成。循环1000万次才有一次机会判断一下是否需要调度*/

myinterrupt.c

 1 /*
2 * linux/mykernel/myinterrupt.c
3 *
4 * Kernel internal my_timer_handler
5 *
6 * Copyright (C) 2013 Mengning
7 *
8 */
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/ctype.h>
12 #include <linux/tty.h>
13 #include <linux/vmalloc.h>
14
15 #include "mypcb.h"
16
17 extern tPCB task[MAX_TASK_NUM];
18 extern tPCB * my_current_task;
19 extern volatile int my_need_sched;
20 volatile int time_count = 0;
21
22 /*
23 * Called by timer interrupt.
24 * it runs in the name of current running process,
25 * so it use kernel stack of current running process
26 */
27 void my_timer_handler(void)
28 {
29 #if 1
30 if(time_count%1000 == 0 && my_need_sched != 1) //设置时间片大小,时间片用完是设置下一个调度标志
31 {
32 printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
33 my_need_sched = 1;
34 }
35 time_count ++ ;
36 #endif
37 return;
38 }
39
40 void my_schedule(void)
41 {
42 tPCB * next;
43 tPCB * prev;
44
45 if(my_current_task == NULL
46 || my_current_task->next == NULL)
47 {
48 return;
49 }
50 printk(KERN_NOTICE ">>>my_schedule<<<\n"); //将当前进程的下一个进城赋给next
51 /* schedule */
52 next = my_current_task->next;
53 prev = my_current_task;
54 if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ //下一个进程的状态是0(正在执行)时用switch to next process进行上下文切换
55 {
56 /* switch to next process */
/*进程切换的关键代码*/
/*将当前ebp保存,esp赋到0,把下一个进程的sp放入esp*/
57         asm volatile(
58 "pushl %%ebp\n\t" /* save ebp */
59 "movl %%esp,%0\n\t" /* save esp */
60 "movl %2,%%esp\n\t" /* restore esp */
61 "movl $1f,%1\n\t" /* save eip */ //1f是指接下的标号1:的位置
62 "pushl %3\n\t"
63 "ret\n\t" /* restore eip */
64 "1:\t" /* next process start here */
65 "popl %%ebp\n\t"
66 : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
67 : "m" (next->thread.sp),"m" (next->thread.ip)
68 );
69 my_current_task = next;
70 printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
71 }
72 else
73 {
74 next->state = 0;
75 my_current_task = next;
76 printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
77 /* switch to new process */
78 asm volatile(
79 "pushl %%ebp\n\t" /* save ebp */ 保存当前进程ebp
80 "movl %%esp,%0\n\t" /* save esp */ 保存eso
81 "movl %2,%%esp\n\t" /* restore esp */ 下一进程的esp放入esp中
82 "movl %2,%%ebp\n\t" /* restore ebp */
83 "movl $1f,%1\n\t" /* save eip */ 保存eip
84 "pushl %3\n\t" 将下一个进程的eip保存在堆栈中
85 "ret\n\t" /* restore eip */
86 : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
87 : "m" (next->thread.sp),"m" (next->thread.ip)
88 );
89 }
90 return;
91 }

三、学习总结

  • 进程的启动和进程的切换机制

进程是接到调度指令才能启动的,进程切换就是从正在运行的进程中收回处理器,然后再使待运行进程来占用处理器。这里所说的从某个进程收回处理器,实质上就是把进程存放在处理器的寄存器中的中间数据找个地方存起来,从而把处理器的寄存器腾出来让其他进程使用。在切换时,一个进程存储在处理器各寄存器中的中间数据叫做进程的上下文,所以进程的切换实质上就是被中止运行进程与待运行进程上下文的切换。在进程未占用处理器时,进程 的上下文是存储在进程的私有堆栈中的。

  • 操作系统是如何工作的

操作系统也有“两把剑”,分别是中断上下文进程上下文的切换。操作系统身负诸如管理与配置内存、决定系统资源供需的优先次序、控制输入与输出设备、操作网络与管理文件系统等基本事务。操作系统通过对进程的控制完成每项事物,进程通过控制数据的压入、弹出堆栈,设置时间片等方式进行进程上下文的切换和中断,从而让操作系统可以正常工作

《Linux内核分析》 第二节 操作系统是如何工作的的更多相关文章

  1. Linux内核分析第二周--操作系统是如何工作的

    Linux内核分析第二周--操作系统是如何工作的 李雪琦 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course ...

  2. 20135327郭皓——Linux内核分析第二周 操作系统是如何工作的

    操作系统是如何工作的 上章重点回顾: 计算机是如何工作的?(总结)——三个法宝 存储程序计算机工作模型,计算机系统最最基础性的逻辑结构: 函数调用堆栈,高级语言得以运行的基础,只有机器语言和汇编语言的 ...

  3. linux内核分析 第二周 操作系统是如何工作的

    银雪纯 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.计算机是如何工作的 ...

  4. linux内核分析作业:操作系统是如何工作的进行:完成一个简单的时间片轮转多道程序内核代码

    计算机如何工作 三个法宝:存储程序计算机.函数调用堆栈.中断机制. 堆栈 函数调用框架 传递参数 保存返回地址 提供局部变量空间 堆栈相关的寄存器 Esp 堆栈指针  (stack pointer) ...

  5. Linux内核分析 笔记二 操作系统是如何工作的 ——by王玥

    一.知识要点 1.计算机是如何工作的?(总结)——三个法宝 存储程序计算机工作模型,计算机系统最最基础性的逻辑结构: 函数调用堆栈,高级语言得以运行的基础,只有机器语言和汇编语言的时候堆栈机制对于计算 ...

  6. Linux内核分析作业二—操作系统是如何工作的

    一.实验:简单的时间片轮转多道程序内核代码运行与分析 my_start_kernel之前都是硬件初始化,它是操作系统的执行入口,每循环100000次就进行一次打印. 执行更加简单,每次时钟中断时都会调 ...

  7. LINUX内核分析第二周学习总结——操作系统是如何工作的

    LINUX内核分析第二周学习总结——操作系统是如何工作的 张忻(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/course ...

  8. Linux内核设计第二周——操作系统工作原理

    Linux内核设计第二周 ——操作系统工作原理 作者:宋宸宁(20135315) 一.实验过程 图1 执行效果 从图中可以看出,每执行my_ start_ kernel函数两次或一次,my_ time ...

  9. Linux内核分析第二周学习博客——完成一个简单的时间片轮转多道程序内核代码

    Linux内核分析第二周学习博客 本周,通过实现一个简单的操作系统内核,我大致了解了操作系统运行的过程. 实验主要步骤如下: 代码分析: void my_process(void) { int i = ...

随机推荐

  1. CSS布局(三) 布局模型

    布局模型 在网页中,元素有三种布局模型:1.流动模型(Flow) 默认的2.浮动模型 (Float)3.层模型(Layer) 1.流动模型(Flow) 流动(Flow)模型是默认的网页布局模式.也就是 ...

  2. Angular2学习笔记(1)——Hello World

    1. 写在前面 之前基于Electron写过一个Markdown编辑器.就其功能而言,主要功能已经实现,一些小的不影响使用的功能由于时间关系还没有完成:但就代码而言,之前主要使用的是jQuery,由于 ...

  3. Actor模式初步入门

    Actor模型概念 Actor模型为并行而生,简单说是未解决高并发的一种编程思路.在Actor模型中,主角是Actor,类似一种worker,Actor彼此之间直接发送消息,不需要经过什么中介,消息是 ...

  4. (转)Centos7 修改硬件时间和系统时间

    查看硬件时间 [root@localhost ~]# hwclock --show Tue 13 Jun 2017 02:11:12 AM CST -0.848845 seconds 1 2 可以看出 ...

  5. jqgrid 主键列的设定

    1.如果需要对jqgrid表格数据有互动操作,需要设定主键列. 2.主键列的作用为:在进行jqgrid表格数据交互(编辑.新增.删除行)时,是通过主键列的值来作为引导值来的. 3.注意:不要给一个jq ...

  6. Android开发环境的发展以及重装系统之后在myeclipse重配Android开发环境。

    android的开发环境早期要自己去去官网下SDK,ADT,AVD等.不仅在一开始要面临国内防火墙的阻拦,四处奔波之后都下载好了,还得自己Linked,可谓困难重重.随着android开发的火热,上面 ...

  7. Debuggex – 超好用的正则表达式可视化调试工具

    正则表达式通常被用来检索或替换符合某个模式的文本内容,编写正则是开发人员的必备技能.简单的正则表达式一下就能看懂含义,但是复杂的正则理解起来就很困难了.有了这款可视化的正则调试工具,以后编写正则表达式 ...

  8. Android应用安全之WEB接口安全

    Android应用安全不仅包括客户端的安全,也包括web接口的安全.移动App中的Web接口安全主要分为以下几块: 1.SQL注入漏洞 这是一个不能再常见的漏洞类型了,由于App的特性,开发人员认为使 ...

  9. Android应用安全之数据传输安全

    Android软件通常使用WIFI网络与服务器进行通信.WiFi并非总是可靠的,例如,开放式网络或弱加密网络中,接入者可以监听网络流量:攻击者可能 自己设置WIFI网络钓鱼.此外,在获得root权限后 ...

  10. android so壳入口浅析

    本文转自http://www.9hao.info/pages/2014/08/android-soke-ru-kou-q 前言   开年来开始接触一些加固样本,基本都对了so进行了处理,拖入ida一看 ...