POJ 1135 Domino Effect (Dijkstra 最短路)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 9335 | Accepted: 2325 |
Description
Take a number of dominoes and build a row by standing them on end with only a small distance in between. If you
do it right, you can tip the first domino and cause all others to fall down in succession (this is where the phrase ``domino effect'' comes from).
While this is somewhat pointless with only a few dominoes, some people went to the opposite extreme in the early Eighties. Using millions of dominoes of different colors and materials to fill whole halls with elaborate patterns of falling dominoes, they created
(short-lived) pieces of art. In these constructions, usually not only one but several rows of dominoes were falling at the same time. As you can imagine, timing is an essential factor here.
It is now your task to write a program that, given such a system of rows formed by dominoes, computes when and where the last domino falls. The system consists of several ``key dominoes'' connected by rows of simple dominoes. When a key domino falls, all rows
connected to the domino will also start falling (except for the ones that have already fallen). When the falling rows reach other key dominoes that have not fallen yet, these other key dominoes will fall as well and set off the rows connected to them. Domino
rows may start collapsing at either end. It is even possible that a row is collapsing on both ends, in which case the last domino falling in that row is somewhere between its key dominoes. You can assume that rows fall at a uniform rate.
Input
them. The key dominoes are numbered from 1 to n. There is at most one row between any pair of key dominoes and the domino graph is connected, i.e. there is at least one way to get from a domino to any other domino by following a series of domino rows.
The following m lines each contain three integers a, b, and l, stating that there is a row between key dominoes a and b that takes l seconds to fall down from end to end.
Each system is started by tipping over key domino number 1.
The file ends with an empty system (with n = m = 0), which should not be processed.
Output
decimal point, and the location of the last domino falling, which is either at a key domino or between two key dominoes(in this case, output the two numbers in ascending order). Adhere to the format shown in the output sample. The test data will ensure there
is only one solution. Output a blank line after each system.
Sample Input
2 1
1 2 27
3 3
1 2 5
1 3 5
2 3 5
0 0
Sample Output
System #1
The last domino falls after 27.0 seconds, at key domino 2. System #2
The last domino falls after 7.5 seconds, between key dominoes 2 and 3.
Source
题目链接:http://poj.org/problem?id=1135
题目大意:有n张关键的多米诺骨牌,m条路。从一条路的起点到终点的牌所有倒下须要时间t。计算最后一张倒下的牌在哪。是什么时候
题目分析:两种情况:
1.最后倒下的牌就是某张关键牌,则时间为最短路中的最大值ma1
2.最后倒下的牌在某两张牌之间,则时间为到两张牌的时间加上两张牌之间牌倒下的时间除2的最大值ma2
最后比較m1和m2。若m1大则为第一种情况,否则是另外一种情况
一组例子:
4 4
1 2 5
2 4 6
1 3 5
3 4 7
0 0
答案:
The last domino falls after 11.5 seconds, between key dominoes 3 and 4.
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int const INF = 0x3fffffff;
int const MAX = 505;
int map[MAX][MAX];
int dis[MAX];
bool used[MAX];
int n, m, ca = 1; void Dijkstra(int v0)
{
memset(used, false, sizeof(used));
for(int i = 1; i <= n; i++)
dis[i] = map[v0][i];
used[v0] = true;
dis[v0] = 0;
for(int i = 0; i < n - 1; i++)
{
int u = 1, mi = INF;
for(int j = 1; j <= n; j++)
{
if(!used[j] && dis[j] < mi)
{
mi = dis[j];
u = j;
}
}
used[u] = true;
for(int k = 1; k <= n; k++)
if(!used[k] && map[u][k] < INF)
dis[k] = min(dis[k], dis[u] + map[u][k]);
}
double ma1 = -1, ma2 = -1;
int pos, pos1, pos2;
for(int i = 1; i <= n; i++)
{
if(dis[i] > ma1)
{
ma1 = dis[i];
pos = i;
}
}
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
if(map[i][j] < INF && (dis[i] + dis[j] + map[i][j]) / 2.0 > ma2)
{
ma2 = (dis[i] + dis[j] + map[i][j]) / 2.0;
pos1 = i;
pos2 = j;
}
}
}
if(ma1 < ma2)
printf("The last domino falls after %.1f seconds, between key dominoes %d and %d.\n\n", ma2, pos1, pos2);
else
printf("The last domino falls after %.1f seconds, at key domino %d.\n\n", ma1, pos); } int main()
{
while(scanf("%d %d", &n, &m) != EOF && (n + m))
{
for(int i = 1; i <= n; i++)
{
dis[i] = INF;
for(int j = 1; j <= n; j++)
map[i][j] = INF;
}
for(int i = 0; i < m; i++)
{
int u, v, w;
scanf("%d %d %d", &u, &v, &w);
map[u][v] = w;
map[v][u] = w;
}
printf("System #%d\n", ca ++);
Dijkstra(1);
}
}
POJ 1135 Domino Effect (Dijkstra 最短路)的更多相关文章
- POJ 1135 -- Domino Effect(单源最短路径)
POJ 1135 -- Domino Effect(单源最短路径) 题目描述: 你知道多米诺骨牌除了用来玩多米诺骨牌游戏外,还有其他用途吗?多米诺骨牌游戏:取一 些多米诺骨牌,竖着排成连续的一行,两 ...
- POJ 1135 Domino Effect(Dijkstra)
点我看题目 题意 : 一个新的多米诺骨牌游戏,就是这个多米诺骨中有许多关键牌,他们之间由一行普通的骨牌相连接,当一张关键牌倒下的时候,连接这个关键牌的每一行都会倒下,当倒下的行到达没有倒下的关键牌时, ...
- POJ 1135.Domino Effect Dijkastra算法
Domino Effect Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10325 Accepted: 2560 De ...
- POJ 1135 Domino Effect (spfa + 枚举)- from lanshui_Yang
Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...
- [POJ] 1135 Domino Effect
Domino Effect Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12147 Accepted: 3046 Descri ...
- poj 2253 Frogger (dijkstra最短路)
题目链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS Memory Limit: 65536K Total Submissi ...
- POJ 2253 Frogger(dijkstra 最短路
POJ 2253 Frogger Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fion ...
- [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)
Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...
- POJ. 2253 Frogger (Dijkstra )
POJ. 2253 Frogger (Dijkstra ) 题意分析 首先给出n个点的坐标,其中第一个点的坐标为青蛙1的坐标,第二个点的坐标为青蛙2的坐标.给出的n个点,两两双向互通,求出由1到2可行 ...
随机推荐
- Java ListIterator(迭代器)
LIstIterator是一个更加强大的Iterator的子类型,它只能用于各种List类的访问,尽管Iterator只能向前移动,但是ListIterator可以双向移动,它还可以产生相对于迭代器在 ...
- 删除MySQL binlog日志的方法
对于比较繁忙的OLTP(在线事务处理)系统,由于每天生成日志量大,这些日志如果长时间不清除,将会对磁盘空间带来很大的浪费.因此,定期删除日志是DBA维护MySQL数据库的一个重要工作内容.下面跟大家分 ...
- finall和set和构造方法的参数意义
package demo04; /* * 形状 */public abstract class Shape { // 求周长 public abstract double getGrith(); // ...
- 配置kotlin自带的编译器,并使用kotlinc、kotlin命令
Kotlin是一种静态类型的编程语言,可在Java虚拟机上运行,也可以编译为JavaScript源代码. 其主要发展来自位于俄罗斯圣彼得堡的JetBrains程序员团队. 虽然语法与Java不兼容,但 ...
- ExpressMapper- The New .NET Mapper!
推荐,据测试比手工映射的效率还高. https://www.codeproject.com/Tips/1009198/Expressmapper-The-New-NET-Mapper
- FileSystemResource在Srping FrameWork 5中的变化
之前在项目中一直使用FileSystemResource这个类作为PropertyPlaceholderConfigurer的Resource引入部署目录外的配置文件,并设置了setIgnoreRes ...
- requireJS2
requireJS的初步掌握(二) 前面我们讲述了requireJS的一些认知和优点,==>http://www.cnblogs.com/wymbk/p/6366113.html 这章我们主要描 ...
- oracle11g数据库升级数据库升级
Oracle对自己产品也一样,对于自己的产品在不同的时期,支持的强度是不一样的.大体分来,支持的强度分为三个级别:Premier Support(最高优先级的支持),Extended Support( ...
- Spark streaming的执行流程
http://www.cnblogs.com/shenh062326/p/3946341.html 其实流程是从这里转载下来的,我只是在流程叙述中做了一下的标注. 当然为了自己能记住的更清楚,我没有 ...
- 压缩归档文件审查工具p7zip-full
压缩归档文件审查工具p7zip-full 在数字取证中,会遇到各种形式的压缩文件和归档文件.为了处理这些不同的文件,Kali Linux提供了专用工具p7zip-full.该工具支持各种格式的压缩 ...