Domino Effect
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 9335   Accepted: 2325

Description

Did you know that you can use domino bones for other things besides playing Dominoes?

Take a number of dominoes and build a row by standing them on end with only a small distance in between. If you
do it right, you can tip the first domino and cause all others to fall down in succession (this is where the phrase ``domino effect'' comes from).




While this is somewhat pointless with only a few dominoes, some people went to the opposite extreme in the early Eighties. Using millions of dominoes of different colors and materials to fill whole halls with elaborate patterns of falling dominoes, they created
(short-lived) pieces of art. In these constructions, usually not only one but several rows of dominoes were falling at the same time. As you can imagine, timing is an essential factor here.




It is now your task to write a program that, given such a system of rows formed by dominoes, computes when and where the last domino falls. The system consists of several ``key dominoes'' connected by rows of simple dominoes. When a key domino falls, all rows
connected to the domino will also start falling (except for the ones that have already fallen). When the falling rows reach other key dominoes that have not fallen yet, these other key dominoes will fall as well and set off the rows connected to them. Domino
rows may start collapsing at either end. It is even possible that a row is collapsing on both ends, in which case the last domino falling in that row is somewhere between its key dominoes. You can assume that rows fall at a uniform rate.

Input

The input file contains descriptions of several domino systems. The first line of each description contains two integers: the number n of key dominoes (1 <= n < 500) and the number m of rows between
them. The key dominoes are numbered from 1 to n. There is at most one row between any pair of key dominoes and the domino graph is connected, i.e. there is at least one way to get from a domino to any other domino by following a series of domino rows.




The following m lines each contain three integers a, b, and l, stating that there is a row between key dominoes a and b that takes l seconds to fall down from end to end.




Each system is started by tipping over key domino number 1.



The file ends with an empty system (with n = m = 0), which should not be processed.

Output

For each case output a line stating the number of the case ('System #1', 'System #2', etc.). Then output a line containing the time when the last domino falls, exact to one digit to the right of the
decimal point, and the location of the last domino falling, which is either at a key domino or between two key dominoes(in this case, output the two numbers in ascending order). Adhere to the format shown in the output sample. The test data will ensure there
is only one solution. Output a blank line after each system.

Sample Input

2 1
1 2 27
3 3
1 2 5
1 3 5
2 3 5
0 0

Sample Output

System #1
The last domino falls after 27.0 seconds, at key domino 2. System #2
The last domino falls after 7.5 seconds, between key dominoes 2 and 3.

Source

Southwestern European Regional Contest 1996



题目链接:http://poj.org/problem?id=1135



题目大意:有n张关键的多米诺骨牌,m条路。从一条路的起点到终点的牌所有倒下须要时间t。计算最后一张倒下的牌在哪。是什么时候



题目分析:两种情况:

1.最后倒下的牌就是某张关键牌,则时间为最短路中的最大值ma1

2.最后倒下的牌在某两张牌之间,则时间为到两张牌的时间加上两张牌之间牌倒下的时间除2的最大值ma2

最后比較m1和m2。若m1大则为第一种情况,否则是另外一种情况



一组例子:

4 4

1 2 5

2 4 6

1 3 5

3 4 7

0 0



答案:

The last domino falls after 11.5 seconds, between key dominoes 3 and 4.

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int const INF = 0x3fffffff;
int const MAX = 505;
int map[MAX][MAX];
int dis[MAX];
bool used[MAX];
int n, m, ca = 1; void Dijkstra(int v0)
{
memset(used, false, sizeof(used));
for(int i = 1; i <= n; i++)
dis[i] = map[v0][i];
used[v0] = true;
dis[v0] = 0;
for(int i = 0; i < n - 1; i++)
{
int u = 1, mi = INF;
for(int j = 1; j <= n; j++)
{
if(!used[j] && dis[j] < mi)
{
mi = dis[j];
u = j;
}
}
used[u] = true;
for(int k = 1; k <= n; k++)
if(!used[k] && map[u][k] < INF)
dis[k] = min(dis[k], dis[u] + map[u][k]);
}
double ma1 = -1, ma2 = -1;
int pos, pos1, pos2;
for(int i = 1; i <= n; i++)
{
if(dis[i] > ma1)
{
ma1 = dis[i];
pos = i;
}
}
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
if(map[i][j] < INF && (dis[i] + dis[j] + map[i][j]) / 2.0 > ma2)
{
ma2 = (dis[i] + dis[j] + map[i][j]) / 2.0;
pos1 = i;
pos2 = j;
}
}
}
if(ma1 < ma2)
printf("The last domino falls after %.1f seconds, between key dominoes %d and %d.\n\n", ma2, pos1, pos2);
else
printf("The last domino falls after %.1f seconds, at key domino %d.\n\n", ma1, pos); } int main()
{
while(scanf("%d %d", &n, &m) != EOF && (n + m))
{
for(int i = 1; i <= n; i++)
{
dis[i] = INF;
for(int j = 1; j <= n; j++)
map[i][j] = INF;
}
for(int i = 0; i < m; i++)
{
int u, v, w;
scanf("%d %d %d", &u, &v, &w);
map[u][v] = w;
map[v][u] = w;
}
printf("System #%d\n", ca ++);
Dijkstra(1);
}
}

POJ 1135 Domino Effect (Dijkstra 最短路)的更多相关文章

  1. POJ 1135 -- Domino Effect(单源最短路径)

     POJ 1135 -- Domino Effect(单源最短路径) 题目描述: 你知道多米诺骨牌除了用来玩多米诺骨牌游戏外,还有其他用途吗?多米诺骨牌游戏:取一 些多米诺骨牌,竖着排成连续的一行,两 ...

  2. POJ 1135 Domino Effect(Dijkstra)

    点我看题目 题意 : 一个新的多米诺骨牌游戏,就是这个多米诺骨中有许多关键牌,他们之间由一行普通的骨牌相连接,当一张关键牌倒下的时候,连接这个关键牌的每一行都会倒下,当倒下的行到达没有倒下的关键牌时, ...

  3. POJ 1135.Domino Effect Dijkastra算法

    Domino Effect Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10325   Accepted: 2560 De ...

  4. POJ 1135 Domino Effect (spfa + 枚举)- from lanshui_Yang

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

  5. [POJ] 1135 Domino Effect

    Domino Effect Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12147 Accepted: 3046 Descri ...

  6. poj 2253 Frogger (dijkstra最短路)

    题目链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

  7. POJ 2253 Frogger(dijkstra 最短路

    POJ 2253 Frogger Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fion ...

  8. [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

  9. POJ. 2253 Frogger (Dijkstra )

    POJ. 2253 Frogger (Dijkstra ) 题意分析 首先给出n个点的坐标,其中第一个点的坐标为青蛙1的坐标,第二个点的坐标为青蛙2的坐标.给出的n个点,两两双向互通,求出由1到2可行 ...

随机推荐

  1. SSD安装记录

    这两天配置SSD,折腾了一两天,终于搞定了,记录下自己遇到的大坑. 1.安装SSD 安装参考:http://blog.csdn.net/shawncheer/article/details/53227 ...

  2. 网络协议之TLS

    前言 由于在TCP.UDP等方式传输数据时,数据包有可能被其他人截获,并解析出信息,这就给信息安全带来了很大的挑战.最初的SSL协议被网景公司提出,它不会影响上层协议(如HTTP.电子邮件等),但可以 ...

  3. react 的JSX语法需要注意哪些点?

    注释方式 ReactDOM.render( <div> {/*JSX 中的注释方式*/} </div>, document.getElementById('root') ) j ...

  4. 【BZOJ】3640: JC的小苹果

    题解 我们考虑列出期望方程组,\(dp[i][j]\)表示在第\(i\)个点血量为\(j\)的时候到达\(N\)点的概率,所有的\(dp[N][j]\)都是1,所有\(j < 0\)都是0 答案 ...

  5. php 会话控制(理解会话控制的概念)

    理解一个概念就需要理解他的背景及产生的原因,这里引入web环境及其http协议. 会话控制产生的背景: http协议是web服务器与客户端相互通信的协议,它是一种无状态协议,所谓无状态,指的是不会维护 ...

  6. 基于FPGA dspbuilder的DNLMS滤波器实现

          自适应滤波器一直是信号处理领域的研究热点之一,经过多年的发展,已经被广泛应用于数字通信.回声消除.图像处理等领域.自适应滤波算法的研究始于20世纪50年代末,Widrow和Hoff等人最早 ...

  7. SaaS模式介绍

     SaaS是Software-as-a-service(软件即服务). SaaS是一种通过Internet提供软件的模式,用户不用再购买软件,而改用向提供商租用基于Web的软件,来管理企业经营活动,且 ...

  8. 用pt-stalk定位MySQL短暂的性能问题

    背景] MySQL出现短暂的3-30秒的性能问题,一般的监控工具较难抓到现场,很难准确定位问题原因. 对于这类需求,我们日常的MySQL分析工具都有些不足的地方: 1. 性能监控工具,目前粒度是分钟级 ...

  9. 在 Intellij IDEA 中部署 Java 应用到 阿里云 ECS

    你有没有怀疑过人生 多的去了 在开发过程中,发布部署项目是一件令人头疼的事 拿springboot项目来说吧(springboot算是已经极大简化了部署了) 步骤 运行clean install 将打 ...

  10. 美团开源Graver框架:用“雕刻”诠释iOS端UI界面的高效渲染

    Graver 是一款高效的 UI 渲染框架,它以更低的资源消耗来构建十分流畅的 UI 界面.Graver 独创性的采用了基于绘制的视觉元素分解方式来构建界面,得益于此,该框架能让 UI 渲染过程变得更 ...