Domino Effect
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 9335   Accepted: 2325

Description

Did you know that you can use domino bones for other things besides playing Dominoes?

Take a number of dominoes and build a row by standing them on end with only a small distance in between. If you
do it right, you can tip the first domino and cause all others to fall down in succession (this is where the phrase ``domino effect'' comes from).




While this is somewhat pointless with only a few dominoes, some people went to the opposite extreme in the early Eighties. Using millions of dominoes of different colors and materials to fill whole halls with elaborate patterns of falling dominoes, they created
(short-lived) pieces of art. In these constructions, usually not only one but several rows of dominoes were falling at the same time. As you can imagine, timing is an essential factor here.




It is now your task to write a program that, given such a system of rows formed by dominoes, computes when and where the last domino falls. The system consists of several ``key dominoes'' connected by rows of simple dominoes. When a key domino falls, all rows
connected to the domino will also start falling (except for the ones that have already fallen). When the falling rows reach other key dominoes that have not fallen yet, these other key dominoes will fall as well and set off the rows connected to them. Domino
rows may start collapsing at either end. It is even possible that a row is collapsing on both ends, in which case the last domino falling in that row is somewhere between its key dominoes. You can assume that rows fall at a uniform rate.

Input

The input file contains descriptions of several domino systems. The first line of each description contains two integers: the number n of key dominoes (1 <= n < 500) and the number m of rows between
them. The key dominoes are numbered from 1 to n. There is at most one row between any pair of key dominoes and the domino graph is connected, i.e. there is at least one way to get from a domino to any other domino by following a series of domino rows.




The following m lines each contain three integers a, b, and l, stating that there is a row between key dominoes a and b that takes l seconds to fall down from end to end.




Each system is started by tipping over key domino number 1.



The file ends with an empty system (with n = m = 0), which should not be processed.

Output

For each case output a line stating the number of the case ('System #1', 'System #2', etc.). Then output a line containing the time when the last domino falls, exact to one digit to the right of the
decimal point, and the location of the last domino falling, which is either at a key domino or between two key dominoes(in this case, output the two numbers in ascending order). Adhere to the format shown in the output sample. The test data will ensure there
is only one solution. Output a blank line after each system.

Sample Input

2 1
1 2 27
3 3
1 2 5
1 3 5
2 3 5
0 0

Sample Output

System #1
The last domino falls after 27.0 seconds, at key domino 2. System #2
The last domino falls after 7.5 seconds, between key dominoes 2 and 3.

Source

Southwestern European Regional Contest 1996



题目链接:http://poj.org/problem?id=1135



题目大意:有n张关键的多米诺骨牌,m条路。从一条路的起点到终点的牌所有倒下须要时间t。计算最后一张倒下的牌在哪。是什么时候



题目分析:两种情况:

1.最后倒下的牌就是某张关键牌,则时间为最短路中的最大值ma1

2.最后倒下的牌在某两张牌之间,则时间为到两张牌的时间加上两张牌之间牌倒下的时间除2的最大值ma2

最后比較m1和m2。若m1大则为第一种情况,否则是另外一种情况



一组例子:

4 4

1 2 5

2 4 6

1 3 5

3 4 7

0 0



答案:

The last domino falls after 11.5 seconds, between key dominoes 3 and 4.

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int const INF = 0x3fffffff;
int const MAX = 505;
int map[MAX][MAX];
int dis[MAX];
bool used[MAX];
int n, m, ca = 1; void Dijkstra(int v0)
{
memset(used, false, sizeof(used));
for(int i = 1; i <= n; i++)
dis[i] = map[v0][i];
used[v0] = true;
dis[v0] = 0;
for(int i = 0; i < n - 1; i++)
{
int u = 1, mi = INF;
for(int j = 1; j <= n; j++)
{
if(!used[j] && dis[j] < mi)
{
mi = dis[j];
u = j;
}
}
used[u] = true;
for(int k = 1; k <= n; k++)
if(!used[k] && map[u][k] < INF)
dis[k] = min(dis[k], dis[u] + map[u][k]);
}
double ma1 = -1, ma2 = -1;
int pos, pos1, pos2;
for(int i = 1; i <= n; i++)
{
if(dis[i] > ma1)
{
ma1 = dis[i];
pos = i;
}
}
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
if(map[i][j] < INF && (dis[i] + dis[j] + map[i][j]) / 2.0 > ma2)
{
ma2 = (dis[i] + dis[j] + map[i][j]) / 2.0;
pos1 = i;
pos2 = j;
}
}
}
if(ma1 < ma2)
printf("The last domino falls after %.1f seconds, between key dominoes %d and %d.\n\n", ma2, pos1, pos2);
else
printf("The last domino falls after %.1f seconds, at key domino %d.\n\n", ma1, pos); } int main()
{
while(scanf("%d %d", &n, &m) != EOF && (n + m))
{
for(int i = 1; i <= n; i++)
{
dis[i] = INF;
for(int j = 1; j <= n; j++)
map[i][j] = INF;
}
for(int i = 0; i < m; i++)
{
int u, v, w;
scanf("%d %d %d", &u, &v, &w);
map[u][v] = w;
map[v][u] = w;
}
printf("System #%d\n", ca ++);
Dijkstra(1);
}
}

POJ 1135 Domino Effect (Dijkstra 最短路)的更多相关文章

  1. POJ 1135 -- Domino Effect(单源最短路径)

     POJ 1135 -- Domino Effect(单源最短路径) 题目描述: 你知道多米诺骨牌除了用来玩多米诺骨牌游戏外,还有其他用途吗?多米诺骨牌游戏:取一 些多米诺骨牌,竖着排成连续的一行,两 ...

  2. POJ 1135 Domino Effect(Dijkstra)

    点我看题目 题意 : 一个新的多米诺骨牌游戏,就是这个多米诺骨中有许多关键牌,他们之间由一行普通的骨牌相连接,当一张关键牌倒下的时候,连接这个关键牌的每一行都会倒下,当倒下的行到达没有倒下的关键牌时, ...

  3. POJ 1135.Domino Effect Dijkastra算法

    Domino Effect Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10325   Accepted: 2560 De ...

  4. POJ 1135 Domino Effect (spfa + 枚举)- from lanshui_Yang

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

  5. [POJ] 1135 Domino Effect

    Domino Effect Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12147 Accepted: 3046 Descri ...

  6. poj 2253 Frogger (dijkstra最短路)

    题目链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

  7. POJ 2253 Frogger(dijkstra 最短路

    POJ 2253 Frogger Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fion ...

  8. [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

  9. POJ. 2253 Frogger (Dijkstra )

    POJ. 2253 Frogger (Dijkstra ) 题意分析 首先给出n个点的坐标,其中第一个点的坐标为青蛙1的坐标,第二个点的坐标为青蛙2的坐标.给出的n个点,两两双向互通,求出由1到2可行 ...

随机推荐

  1. 用原生js实现ajax

    // 通过createXHR()函数创建一个XHR对象 function createXHR() { if(window.XMLHttpRequest) { // IE7.Firefox.Opera. ...

  2. day25作业

    1.阻塞  2.就绪  3.阻塞  4.Runnable  5.join()  6.synchronized  7.notify()和notifyAll()   8.Object 1.A   2.D  ...

  3. vue.js 解决空格报错!!!

    当我们初入vue.js的时候.使用cli脚手架快速创建项目的时候: 如果语法格式错误(这里主要指的是:空格多少引起的问题)!! 找到  webpack.base.config.js文件注释掉下面的东西 ...

  4. SqlServer代理作业

    最近一直在学习SqlServer 作业方面的知识,总结一下. 一:作业存在的库. msdb  use msdb Msdb数据库是代理服务数据库,为其报警.任务调度和记录操作员的操作提供存储空间. 二: ...

  5. IDEA中Ctrl+Shift+F快捷键无效的解决方式

    某天突然发现idea非常重要的快捷键ctrl+shift+F无效了,网上搜了很多都说是qq快捷键冲突,但是找了下qq快捷键却没有解决,现在给大家一个解决快捷键冲突的思路: 1.查看QQ快捷键--> ...

  6. 原生js返回顶部

    let backToTop = function() { let scrollToptimer = setInterval(function() { let top = document.body.s ...

  7. Gitlab Webhooks, External Services, and API(二)

    一. 使用webhooks webhook 是一个API的概念,并且变得越来越流行.我们能用事件描述的事物越多,webhook的作用范围也就越大.webhook作为 个轻量的事件处理应用,正变得越来越 ...

  8. Marriage is Stable HDU1522 稳定婚姻问题基础

    几对男女   给出每个人心中的优先级   进行最合理的匹配 要打印名字的话必须有一个名字数组 英文名用map 稳定婚姻问题: 每次循环遍历所有的男的 每个男的对目前未被拒绝的并且优先级最高的进行预匹配 ...

  9. 001 SpringMVC的helloWorld程序

    一:helloworld程序 1.结构目录 2.添加lib包 3.在web.xml中配置DispatchServlet 这个就是主servlet. <?xml version="1.0 ...

  10. 图片视频访问servlet(支持苹果视频断点续传)

    package com.sm.common.servlet; import java.io.File; import java.io.FileInputStream; import java.io.F ...