【题解】 Codeforces 662A Gambling Nim (线性基)
Solution:
- 我们先取\(ans=a[1] \bigoplus a[2] \bigoplus ... \bigoplus a[n]\),然后我们定义\(c[i]=a[i] \bigoplus b[i]\),我们就可以知道每异或一个\(c[i]\),就是更换选取\(a[i],b[i]\),这里很好想。
- 然后我们要处理出\(c[i]\),中有多少子集异或和为\(ans\),这样异或出来总和为\(0\),这个我们就可以用线性基了。
- 然后后面求子集我还是没有太弄懂,看了题解也有点蒙,先留一个坑
- 题解
Code:
//It is coded by Ning_Mew on 5.31
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int maxn=5e5+7;
int n,tot=0;
LL a[maxn],b[maxn],c[maxn],x[maxn],ans=0;
bool push(LL s){
for(int i=63;i>=0;i--){
if((s>>i)&1){
if(x[i]){s=s^x[i];}
else {x[i]=s;return true;}
}
}return false;
}
LL q_pow(LL xx,LL t){
LL re=1;
while(t){
if(t%2){re=re*xx;}
xx=xx*xx;t=t/2;
}return re;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%I64d%I64d",&a[i],&b[i]);
c[i]=a[i]^b[i];ans^=a[i];
}
for(int i=1;i<=n;i++){
if(push(c[i]))tot++;
}
if(push(ans)){printf("1/1\n");return 0;}
else{
printf("%I64d/%I64d\n",q_pow(2,tot)-1,q_pow(2,tot));
}
return 0;
}
博主蒟蒻,随意转载。但必须附上原文链接:http://www.cnblogs.com/Ning-Mew/,否则你会终生找不到妹子!!!
【题解】 Codeforces 662A Gambling Nim (线性基)的更多相关文章
- 【CF662A】Gambling Nim 线性基
[CF662A]Gambling Nim 题意:n长卡牌,第i张卡牌正面的数字是$a_i$,反面的数字是$b_i$,每张卡牌等概率为正面朝上或反面朝上.现在Alice和Bob要用每张卡牌朝上的数字玩N ...
- CodeForces - 662A Gambling Nim
http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...
- Codeforces 1163E Magical Permutation [线性基,构造]
codeforces 思路 我顺着图论的标签点进去的,却没想到-- 可以发现排列内每一个数都是集合里的数异或出来的. 考虑答案的上界是多少.如果能用小于\(2^k\)的数构造出\([0,2^k-1]\ ...
- 【题解】P4570 [BJWC2011]元素 - 线性基 - 贪心
P4570 [BJWC2011]元素 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 给你 \(n\) 个二元组 \( ...
- CodeForces - 587E[线段树+线性基+差分] ->(线段树维护区间合并线性基)
题意:给你一个数组,有两种操作,一种区间xor一个值,一个是查询区间xor的结果的种类数 做法一:对于一个给定的区间,我们可以通过求解线性基的方式求出结果的种类数,而现在只不过将其放在线树上维护区间线 ...
- 【bzoj3105】[cqoi2013]新Nim游戏 高斯消元求线性基
题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从 ...
- 【BZOJ4004】装备购买(线性基)
[BZOJ4004]装备购买(线性基) 题面 BZOJ 洛谷 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am ...
- 【BZOJ2115】[Wc2011] Xor 高斯消元求线性基+DFS
[BZOJ2115][Wc2011] Xor Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ...
- 【bzoj4269】再见Xor 高斯消元求线性基
题目描述 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 输入 第一行一个正整数N. 接下来一行N个非负整数. 输出 一行,包含两 ...
随机推荐
- Altium 拼板方法以及 注意的 地方
1.修改软件设置, 即工具→优先选项→覆铜重建 对号去掉,如下,否则 拼板复制 覆铜 会变形导致拼板错误!!! 2.拼板方法,Ctrl+A全部复制(不要漏掉),选择特殊粘贴的方式,快捷键 E→A 去 ...
- 03-Centos7安装部署Mirrorgate-踩坑记录
FAQ 1.没有安装bzip2 解决方法 yum -y install bzip2 > phantomjs-prebuilt@2.1.16 install /root/test/mirrorga ...
- Sqlite 快速批量插入数据 测试
public static int insertDbBatch() { string sql = ""; SQLiteConnection conn = new SQLiteCon ...
- 20155333 《网络对抗》 Exp7 网络欺诈防范
20155333 <网络对抗> Exp7 网络欺诈防范 基础问题 通常在什么场景下容易受到DNS spoof攻击? 公共网络 在日常生活工作中如何防范以上两种攻击方法? DNS欺骗攻击是很 ...
- libgdx相关知识点
Gdx.graphics.setContinuousRendering(false); 设置图像为非连续自动渲染. 设置Opengl的混合模式,支持alpha属性 Gdx.gl.glBlendFunc ...
- PWM输出
PWM(Pulse Width Modulation),脉冲宽度调制. 脉冲的频率由ARR控制,ARR越大频率越小:占空比由CCRx控制,CCRx越小占空比越大. 捕获/比较通道的输出部分(通道1) ...
- nodejs安装及npm模块插件安装路径配置
在学习完js后,我们就要进入nodejs的学习,因此就必须配置nodejs和npm的属性了. 我相信,个别人在安装时会遇到这样那样的问题,看着同学都已装好,难免会焦虑起来.于是就开始上网查找解决方案, ...
- App推荐 | Google Tasks
前不久,Google推出了一款移动任务管理应用Google Task,在使用2天后,写一下使用感受,并与Google同类产品Keep进行一个对比. 首先欣赏几张官方的App截图 然后来看一下官方的介绍 ...
- petapoco 对存储过程的扩展 干货
好久没发表文章了.心血来潮,简单的介绍下这次工作中的问题. 项目中运用了Petapoco,可是petapoco对存储过程的支持不够好.或者说对于某些特殊场景,petapoco的sql支持度有限. 比如 ...
- UI Recorder 功能详解
前言: UI Recorder安装教程见:UI Recorder 安装教程(一).UI Recorder 安装教程(二) 本次着重介绍UI Recorder录制过程中的功能按钮:添加悬停,添加断言,使 ...