Why are Eight Bits Enough for Deep Neural Networks?

Deep learning is a very weird technology. It evolved over decades on a very different track than the mainstream of AI, kept alive by the efforts of a handful of believers. When I started using it a few years ago, it reminded me of the first time I played with an iPhone – it felt like I’d been handed something that had been sent back to us from the future, or alien technology.

One of the consequences of that is that my engineering intuitions about it are often wrong. When I came across im2col, the memory redundancy seemed crazy, based on my experience with image processing, but it turns out it’s an efficient way to tackle the problem. While there are more complex approaches that can yield better results, they’re not the ones my graphics background would have predicted.

Another key area that seems to throw a lot of people off is how much precision you need for the calculations inside neural networks. For most of my career, precision loss has been a fairly easy thing to estimate. I almost never needed more than 32-bit floats, and if I did it was because I’d screwed up my numerical design and I had a fragile algorithm that would go wrong pretty soon even with 64 bits. 16-bit floats were good for a lot of graphics operations, as long as they weren’t chained together too deeply. I could use 8-bit values for a final output for display, or at the end of an algorithm, but they weren’t useful for much else.

It turns out that neural networks are different. You can run them with eight-bit parameters and intermediate buffers, and suffer no noticeable loss in the final results. This was astonishing to me, but it’s something that’s been re-discovered over and over again. My colleague Vincent Vanhoucke has the only paper I’ve found covering this result for deep networks, but I’ve seen with my own eyes how it holds true across every application I’ve tried it on. I’ve also had to convince almost every other engineer who I tell that I’m not crazy, and watch them prove it to themselves by running a lot of their own tests, so this post is an attempt to short-circuit some of that!

How does it work?

You can see an example of a low-precision approach in the Jetpac mobile framework, though to keep things simple I keep the intermediate calculations in float and just use eight bits to compress the weights. Nervana’s NEON library also supports fp16, though not eight-bit yet. As long as you accumulate to 32 bits when you’re doing the long dot products that are the heart of the fully-connected and convolution operations (and that take up the vast majority of the time) you don’t need float though, you can keep all your inputs and output as eight bit. I’ve even seen evidence that you can drop a bit or two below eight without too much loss! The pooling layers are fine at eight bits too, I’ve generally seen the bias addition and activation functions (other than the trivial relu) done at higher precision, but 16 bits seems fine even for those.

I’ve generally taken networks that have been trained in full float and down-converted them afterwards, since I’m focused on inference, but training can also be done at low precision. Knowing that you’re aiming at a lower-precision deployment can make life easier too, even if you train in float, since you can do things like place limits on the ranges of the activation layers.

Why does it work?

I can’t see any fundamental mathematical reason why the results should hold up so well with low precision, so I’ve come to believe that it emerges as a side-effect of a successful training process. When we are trying to teach a network, the aim is to have it understand the patterns that are useful evidence and discard the meaningless variations and irrelevant details. That means we expect the network to be able to produce good results despite a lot of noise. Dropout is a good example of synthetic grit being thrown into the machinery, so that the final network can function even with very adverse data.

The networks that emerge from this process have to be very robust numerically, with a lot of redundancy in their calculations so that small differences in input samples don’t affect the results. Compared to differences in pose, position, and orientation, the noise in images is actually a comparatively small problem to deal with. All of the layers are affected by those small input changes to some extent, so they all develop a tolerance to minor variations. That means that the differences introduced by low-precision calculations are well within the tolerances a network has learned to deal with. Intuitively, they feel like weebles that won’t fall down no matter how much you push them, thanks to an inherently stable structure.

At heart I’m an engineer, so I’ve been happy to see it works in practice without worrying too much about why, I don’t want to look a gift horse in the mouth! What I’ve laid out here is my best guess at the cause of this property, but I would love to see a more principled explanation if any researchers want to investigate more thoroughly? [Update – here’s a related paper from Matthieu Courbariaux, thanks Scott!]

What does this mean?

This is very good news for anyone trying to optimize deep neural networks. On the general CPU side, modern SIMD instruction sets are often geared towards float, and so eight bit calculations don’t offer a massive computational advantage on recent x86 or ARM chips. DRAM access takes a lot of electrical power though, and is slow too, so just reducing the bandwidth by 75% can be a very big help. Being able to squeeze more values into fast, low-power SRAM cache and registers is a win too.

GPUs were originally designed to take eight bit texture values, perform calculations on them at higher precisions, and then write them back out at eight bits again, so they’re a perfect fit for our needs. They generally have very wide pipes to DRAM, so the gains aren’t quite as straightforward to achieve, but can be exploited with a bit of work. I’ve learned to appreciate DSPs as great low-power solutions too, and their instruction sets are geared towards the sort of fixed-point operations we need. Custom vision chips like Movidius’ Myriad are good fits too.

Deep networks’ robustness means that they can be implemented efficiently across a very wide range of hardware. Combine this flexibility with their almost-magical effectiveness at a lot of AI tasks that have eluded us for decades, and you can see why I’m so excited about how they will alter our world over the next few years!

Why are Eight Bits Enough for Deep Neural Networks?的更多相关文章

  1. 为什么深度神经网络难以训练Why are deep neural networks hard to train?

    Imagine you're an engineer who has been asked to design a computer from scratch. One day you're work ...

  2. Training Deep Neural Networks

    http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural ...

  3. On Explainability of Deep Neural Networks

    On Explainability of Deep Neural Networks « Learning F# Functional Data Structures and Algorithms is ...

  4. Introduction to Deep Neural Networks

    Introduction to Deep Neural Networks Neural networks are a set of algorithms, modeled loosely after ...

  5. 深度神经网络入门教程Deep Neural Networks: A Getting Started Tutorial

    Deep Neural Networks are the more computationally powerful cousins to regular neural networks. Learn ...

  6. Classifying plankton with deep neural networks

    Classifying plankton with deep neural networks The National Data Science Bowl, a data science compet ...

  7. (Deep) Neural Networks (Deep Learning) , NLP and Text Mining

    (Deep) Neural Networks (Deep Learning) , NLP and Text Mining 最近翻了一下关于Deep Learning 或者 普通的Neural Netw ...

  8. Must Know Tips/Tricks in Deep Neural Networks

    Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)   Deep Neural Networks, especially C ...

  9. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Initialization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving D ...

随机推荐

  1. VS2015做单元测试

    1.安装测试插件 2.新建测试用例 这里就用课堂练习找水王  作例子 写一个类waterKing.h和waterKing.cpp //idList.h #pragma once #include< ...

  2. iframe高度自适应的6个方法

    原文链接:http://caibaojian.com/iframe-adjust-content-height.html JS自适应高度,其实就是设置iframe的高度,使其等于内嵌网页的高度,从而看 ...

  3. Improving the Safety, Scalability, and Efficiency of Network Function State Transfers

    Improving the Safety, Scalability, and Efficiency of Network Function State Transfers 来源:ACM SIGCOMM ...

  4. week1读构建之法-读书笔记

    最开始听见杨老师说邹欣老师这个名字总觉得很熟悉,后来看见博客上老师的头像恍然大悟,原来机缘巧合已经在微博上关注邹老师许久,一直觉得邹老师是个很有意思的人,兴趣一定十分广泛,看了老师的书确实能感觉到邹老 ...

  5. Java实现的词频统计——单元测试

    前言:本次测试过程中发现了几个未知字符,这里将其转化为十六进制码对其加以区分. 1)保存统计结果的Result文件中显示如图: 2)将其复制到eclipse环境下的切分方法StringTokenize ...

  6. (十二)Jmeter之Bean Shell的使用(一)

    一.什么是Bean Shell BeanShell是一种完全符合Java语法规范的脚本语言,并且又拥有自己的一些语法和方法; BeanShell是一种松散类型的脚本语言(这点和JS类似); BeanS ...

  7. mysql 慢查询,查询缓存,索引,备份,水平分割

    1.开启慢查询 在mysql的配置文件my.ini最后增加如下命令 [mysqld]port=3306slow_query_log =1long_query_time = 1 2.查看慢查询记录 默认 ...

  8. Oracle忘记密码如何重置

    昨天安装Oracle11g R2的时候给scott用户设置密码,当时没有显示而且还只以输入一次,可能密码输入错误,结果今天用scott用户登录果然密码不对,还好sys和system用户都正常,就进去给 ...

  9. CF464C-Substitutes in Number

    题意 开始给出一个长为\(n\)的数字串,有\(m\)次操作按顺序执行,每次把当前数字串中的某一个数码替换成一个数字串\(t\)(可以为空或多位),最后问操作结束后的数字串十进制下模\(10^9+7\ ...

  10. Day22-session

    1. cookie: 保存在用户浏览器端的一个键值对.基于cookie做用户验证的时候,不适合把敏感信息放到cookie中.例如我们可以把user_id这个不敏感的信息放到cookie中,然后基于us ...