KL散度(Kullback-Leibler_divergence)
一. 概念
KL-divergence,俗称KL距离,常用来衡量两个概率分布的距离。
根据shannon的信息论,给定一个字符集的概率分布,我们可以设计一种编码,使得表示该字符集组成的字符串平均需要的比特数最少。假设这个字符集是X,对x∈X,其出现概率为P(x),那么其最优编码平均需要的比特数等于这个字符集的熵:
H(X)=∑x∈XP(x)log[1/P(x)]
在同样的字符集上,假设存在另一个概率分布Q(X)。如果用概率分布P(X)的最优编码(即字符x的编码长度等于log[1/P(x)]),来为符合分布Q(X)的字符编码,那么表示这些字符就会比理想情况多用一些比特数。KL-divergence就是用来衡量这种情况下平均每个字符多用的比特数,因此可以用来衡量两个分布的距离。即:
DKL(Q||P)=∑x∈XQ(x)[log(1/P(x))] - ∑x∈XQ(x)[log[1/Q(x)]]=∑x∈XQ(x)log[Q(x)/P(x)]
由于-log(u)是凸函数,因此有下面的不等式
DKL(Q||P) = -∑x∈XQ(x)log[P(x)/Q(x)] = E[-logP(x)/Q(x)] ≥ -logE[P(x)/Q(x)] = -log∑x∈XQ(x)P(x)/Q(x) = 0
即KL-divergence始终是大于等于0的。当且仅当两分布相同时,KL-divergence等于0。
二. 例子
下面举一个实际的例子吧:比如有四个类别,一个方法A得到四个类别的概率分别是0.1,0.2,0.3,0.4。另一种方法B(或者说是事实情况)是得到四个类别的概率分别是0.4,0.3,0.2,0.1,那么这两个分布的KL-Distance(A,B)=0.1*log(0.1/0.4)+0.2*log(0.2/0.3)+0.3*log(0.3/0.2)+0.4*log(0.4/0.1)
这个里面有正的,有负的,可以证明KL-Distance()>=0.
从上面可以看出, KL散度是不对称的。即KL-Distance(A,B)!=KL-Distance(B,A)
KL散度是不对称的,当然,如果希望把它变对称,
Ds(p1, p2) = [D(p1, p2) + D(p2, p1)] / 2
KL散度(Kullback-Leibler_divergence)的更多相关文章
- KL散度(Kullback–Leibler divergence)
KL散度是度量两个分布之间差异的函数.在各种变分方法中,都有它的身影. 转自:https://zhuanlan.zhihu.com/p/22464760 一维高斯分布的KL散度 多维高斯分布的KL散度 ...
- KL散度的理解(GAN网络的优化)
原文地址Count Bayesie 这篇文章是博客Count Bayesie上的文章Kullback-Leibler Divergence Explained 的学习笔记,原文对 KL散度 的概念诠释 ...
- KL散度与JS散度
1.KL散度 KL散度( Kullback–Leibler divergence)是描述两个概率分布P和Q差异的一种测度.对于两个概率分布P.Q,二者越相似,KL散度越小. KL散度的性质:P表示真实 ...
- KL散度非负性证明
1 KL散度 KL散度(Kullback–Leibler divergence) 定义如下: $D_{K L}=\sum\limits_{i=1}^{n} P\left(x_{i}\right) \t ...
- paper 23 :Kullback–Leibler divergence KL散度(2)
Kullback–Leibler divergence KL散度 In probability theory and information theory, the Kullback–Leibler ...
- 【原】浅谈KL散度(相对熵)在用户画像中的应用
最近做用户画像,用到了KL散度,发现效果还是不错的,现跟大家分享一下,为了文章的易读性,不具体讲公式的计算,主要讲应用,不过公式也不复杂,具体可以看链接. 首先先介绍一下KL散度是啥.KL散度全称Ku ...
- 浅谈KL散度
一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence) ...
- ELBO 与 KL散度
浅谈KL散度 一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information dive ...
- 交叉熵cross entropy和相对熵(kl散度)
交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量真实分布p与当前训练得到的概率分布q有多么大的差异. 相对熵(relativ ...
- python 3计算KL散度(KL Divergence)
KL DivergenceKL( Kullback–Leibler) Divergence中文译作KL散度,从信息论角度来讲,这个指标就是信息增益(Information Gain)或相对熵(Rela ...
随机推荐
- 20145327 《Java程序设计》第二周学习总结
20145327 <Java程序设计>第二周学习总结 教材学习内容总结 JAVA类型:基本类型与类类型(也称参考类型). 基本类型分为:整数(short,int,long).字节(byte ...
- vROPS中获取虚拟机在VC中的UUID
vROPS中虚拟机对象的ID为resourceID,跟vCenter中虚拟机的UUID是不一致的,因此想要将vROPS中的虚拟机和vCenter中的虚拟机对应肯定不能靠虚拟机名称,而是一定要靠UUID ...
- ubuntu18.04 64bit如何安装docker
注:参考自https://docs.docker.com/install/linux/docker-ce/ubuntu/ 1.卸载旧版本docker(如果之前安装了) sudo apt-get rem ...
- ubifs文件系统挂载时提示ubi0: MTD device 5 is write-protected, attach in read-only mode
答:笔者遇到的这种情况是由于分区表未与nor flash的物理擦除块边界对齐而导致的,因此调整分区表即可解决此问题
- Commons Configuration之一简介
转载自(https://my.oschina.net/u/2000201/blog/486327) 1 简介 Commons Configuration软件类库提供通用配置接口,使Java应用程 ...
- 使用commons-pool2改造APNs连接池
最近公司很多人反应apns推送的消息很慢,有时候需要5.6分钟才收到消息,我检查了下日志发现确实存在这个问题. 我们使用的是 https://github.com/relayrides/pushy 这 ...
- Java的历史及发展
Java之父:詹姆斯·高斯林 (James Gosling) Java自1995诞生,至今已经20多年的历史. Java的名字的来源:Java是印度尼西亚爪哇岛的英文名称,因盛产咖啡而闻名.Java语 ...
- RSA非对称加密算法
基本定义: RSA公开密钥密码体制.所谓的公开密钥密码体制就是使用不同的加密密钥与解密密钥,是一种“由已知加密密钥推导出解密密钥在计算上是不可行的”密码体制.在公开密钥密码体制中,加密密钥(即公开密钥 ...
- Bigdecimal: Non-terminating decimal expansion; no exact representable decimal result.
做除法没有指定保留小数点后几位,就会抛出此异常. 因为会除不尽 Non-terminating decimal expansion; no exact representable decimal re ...
- nginx 开启rewrite thinkcmf
server{ ... 省略 location / { index index.php index.html index.htm; #如果请求既不是一个文件,也不是一个目录,则执行一下重写规则 if ...