KL散度(Kullback-Leibler_divergence)
一. 概念
KL-divergence,俗称KL距离,常用来衡量两个概率分布的距离。
根据shannon的信息论,给定一个字符集的概率分布,我们可以设计一种编码,使得表示该字符集组成的字符串平均需要的比特数最少。假设这个字符集是X,对x∈X,其出现概率为P(x),那么其最优编码平均需要的比特数等于这个字符集的熵:
H(X)=∑x∈XP(x)log[1/P(x)]
在同样的字符集上,假设存在另一个概率分布Q(X)。如果用概率分布P(X)的最优编码(即字符x的编码长度等于log[1/P(x)]),来为符合分布Q(X)的字符编码,那么表示这些字符就会比理想情况多用一些比特数。KL-divergence就是用来衡量这种情况下平均每个字符多用的比特数,因此可以用来衡量两个分布的距离。即:
DKL(Q||P)=∑x∈XQ(x)[log(1/P(x))] - ∑x∈XQ(x)[log[1/Q(x)]]=∑x∈XQ(x)log[Q(x)/P(x)]
由于-log(u)是凸函数,因此有下面的不等式
DKL(Q||P) = -∑x∈XQ(x)log[P(x)/Q(x)] = E[-logP(x)/Q(x)] ≥ -logE[P(x)/Q(x)] = -log∑x∈XQ(x)P(x)/Q(x) = 0
即KL-divergence始终是大于等于0的。当且仅当两分布相同时,KL-divergence等于0。
二. 例子
下面举一个实际的例子吧:比如有四个类别,一个方法A得到四个类别的概率分别是0.1,0.2,0.3,0.4。另一种方法B(或者说是事实情况)是得到四个类别的概率分别是0.4,0.3,0.2,0.1,那么这两个分布的KL-Distance(A,B)=0.1*log(0.1/0.4)+0.2*log(0.2/0.3)+0.3*log(0.3/0.2)+0.4*log(0.4/0.1)
这个里面有正的,有负的,可以证明KL-Distance()>=0.
从上面可以看出, KL散度是不对称的。即KL-Distance(A,B)!=KL-Distance(B,A)
KL散度是不对称的,当然,如果希望把它变对称,
Ds(p1, p2) = [D(p1, p2) + D(p2, p1)] / 2
KL散度(Kullback-Leibler_divergence)的更多相关文章
- KL散度(Kullback–Leibler divergence)
KL散度是度量两个分布之间差异的函数.在各种变分方法中,都有它的身影. 转自:https://zhuanlan.zhihu.com/p/22464760 一维高斯分布的KL散度 多维高斯分布的KL散度 ...
- KL散度的理解(GAN网络的优化)
原文地址Count Bayesie 这篇文章是博客Count Bayesie上的文章Kullback-Leibler Divergence Explained 的学习笔记,原文对 KL散度 的概念诠释 ...
- KL散度与JS散度
1.KL散度 KL散度( Kullback–Leibler divergence)是描述两个概率分布P和Q差异的一种测度.对于两个概率分布P.Q,二者越相似,KL散度越小. KL散度的性质:P表示真实 ...
- KL散度非负性证明
1 KL散度 KL散度(Kullback–Leibler divergence) 定义如下: $D_{K L}=\sum\limits_{i=1}^{n} P\left(x_{i}\right) \t ...
- paper 23 :Kullback–Leibler divergence KL散度(2)
Kullback–Leibler divergence KL散度 In probability theory and information theory, the Kullback–Leibler ...
- 【原】浅谈KL散度(相对熵)在用户画像中的应用
最近做用户画像,用到了KL散度,发现效果还是不错的,现跟大家分享一下,为了文章的易读性,不具体讲公式的计算,主要讲应用,不过公式也不复杂,具体可以看链接. 首先先介绍一下KL散度是啥.KL散度全称Ku ...
- 浅谈KL散度
一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence) ...
- ELBO 与 KL散度
浅谈KL散度 一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information dive ...
- 交叉熵cross entropy和相对熵(kl散度)
交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量真实分布p与当前训练得到的概率分布q有多么大的差异. 相对熵(relativ ...
- python 3计算KL散度(KL Divergence)
KL DivergenceKL( Kullback–Leibler) Divergence中文译作KL散度,从信息论角度来讲,这个指标就是信息增益(Information Gain)或相对熵(Rela ...
随机推荐
- 解读:MultipleOutputs类
//MultipleOutputs类用于简化多文件输出The MultipleOutputs class simplifies writing output data to multiple outp ...
- POJ_2182 Lost Cows(线段树的简单应用)
基本思路就是,从后往前读取数字small[i].在剩余编号集合里(一开始剩余编号集合为全集)查找第small[i]+1个编号,该编号就是对应位置牛的编号. 若直接用数组来做,则每次查找都需要遍历前n个 ...
- 1568: [JSOI2008]Blue Mary开公司
1568: [JSOI2008]Blue Mary开公司 题目描述 传送门 题目分析 简单分析可以发现就是不停给出了\(n\)条直线,要求每次给出一条直线后求出所有直线在横坐标为\(x\)时\(y\) ...
- Kubernetes 删除 namespace
一. 正常情况情况下的删除: kubectl delete namespace jenkins 二. 如果上面的方法不能删除,且namespace的状态一直显示为Terminating的话 要查看一下 ...
- 在.Net中进行SQL Server数据库备份与还原操作实用类
#region 类说明 //----------------------------------------------------------------------------- // // 项目 ...
- mac 下 安装 mongodb
使用brew安装,不过brew不再更新, 通过 sudo chown -R $(whoami):admin /usr/local 这条语句终端有提醒的 xcode-select --install 需 ...
- 调试bug的几种方法
1.php中的dump,echo,exit 2.浏览器的f12 3.安装xdebug扩展(debugger调试器,profiler探查器,trace代码跟踪) profile日志能记录函数的执行耗时和 ...
- thinkphp3.2.3定时任务 不能获取本模块config, 不能获取本模块的其他配置
一开始创建就有一个home模块再创建一个Data模块 定时任务在/Application/Common/Conf/crons.php中,这里不讲怎么创建定时任务. Data模块的配置文件路径如下/Ap ...
- Burpsuite的简单应用-y-Proxy
打开burpsuite:Proxy功能 一.进入Proxy页面,代理设置 将浏览器的代理地址设置一样: 之前没有代理,直接添加,有的话,可以勾选就好了:不同浏览器,设置位置不一致,百度参考 二.执行: ...
- winmm.dll获取和设置声音
[DllImport("winmm.dll")] private static extern int waveOutGetVolume(IntPtr hwo, out uint d ...