http://www.lydsy.com/JudgeOnline/problem.php?id=1647

自己太弱。。。看题解。。

竟然是枚举第一行的放法,,,因为一定要全部变0,所以将前一行1的在这一行翻转掉就好了。。。因为是一定要翻掉前一行,所以正确性显然。。。。。。。。。。。。

T_T

表示智商不够

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=20, dx[]={-1, 1, 0, 0}, dy[]={0, 0, -1, 1};
int c[N][N], ans[N][N], n, m, tot, mn=~0u>>1;
bool a[N][N], b[N][N]; void rot(int x, int y) {
b[x][y]=!b[x][y]; ++c[x][y];
rep(i, 4) {
int fx=dx[i]+x, fy=dy[i]+y;
if(fx<1 || fy<1 || fx>n || fy>m) continue;
b[fx][fy]=!b[fx][fy];
}
}
void getans(int x) {
CC(c, 0); tot=0;
for1(i, 1, n) for1(j, 1, m) b[i][j]=a[i][j];
for1(i, 0, m-1) if((1<<i)&x) { rot(1, i+1); ++tot; if(tot>=mn) return; }
for1(i, 2, n) for1(j, 1, m) if(b[i-1][j]) { rot(i, j); ++tot; if(tot>=mn) return; }
for1(i, 1, n) for1(j, 1, m) if(b[i][j]) return;
mn=tot;
for1(i, 1, n) for1(j, 1, m) ans[i][j]=c[i][j];
} int main() {
read(n); read(m);
for1(i, 1, n) for1(j, 1, m) read(a[i][j]);
int end=(1<<m)-1;
for1(i, 0, end) getans(i);
if(mn!=~0u>>1) for1(i, 1, n) { printf("%d", ans[i][1]); for1(j, 2, m) printf(" %d", ans[i][j]); puts(""); }
else puts("IMPOSSIBLE");
return 0;
}

Description

Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He has arranged a brainy activity for cows in which they manipulate an M x N grid (1 <= M <= 15; 1 <= N <= 15) of square tiles, each of which is colored black on one side and white on the other side. As one would guess, when a single white tile is flipped, it changes to black; when a single black tile is flipped, it changes to white. The cows are rewarded when they flip the tiles so that each tile has the white side face up. However, the cows have rather large hooves and when they try to flip a certain tile, they also flip all the adjacent tiles (tiles that share a full edge with the flipped tile). Since the flips are tiring, the cows want to minimize the number of flips they have to make. Help the cows determine the minimum number of flips required, and the locations to flip to achieve that minimum. If there are multiple ways to achieve the task with the minimum amount of flips, return the one with the least lexicographical ordering in the output when considered as a string. If the task is impossible, print one line with the word "IMPOSSIBLE".

 约翰知道,那些高智力又快乐的奶牛产奶量特别高.所以他做了一个翻瓦片的 益智游戏来娱乐奶牛.在一个M×N(1≤M,N≤15)的骨架上,每一个格子里都有一个可以翻转的瓦片.瓦片的一面是黑色的,而另一面是白色的.对一个瓦 片进行翻转,可以使黑变白,也可以使白变黑.然而,奶牛们的蹄子是如此的巨大而且笨拙,所以她们翻转一个瓦片的时候,与之有公共边的相邻瓦片也都被翻转 了.那么,这些奶牛们最少需要多少次翻转,使所有的瓦片都变成白面向上呢?如杲可以做到,输出字典序最小的结果(将结果当成字符串处理).如果不能做到, 输出“IMPOSSIBLE”.

Input

* Line 1: Two space-separated integers: M and N

* Lines 2..M+1: Line i+1 describes the colors (left to right) of row i of the grid with N space-separated integers which are 1 for black and 0 for white

    第1行输入M和N,之后M行N列,输入游戏开始时的瓦片状态.0表示白面向上,1表示黑面向上.

Output

* Lines 1..M: Each line contains N space-separated integers, each specifying how many times to flip that particular location.

    输出M行,每行N个用空格隔开的整数,表示对应的格子进行了多少次翻转.

Sample Input

4 4
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

Sample Output

0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0

OUTPUT DETAILS:

After flipping at row 2 column 1, the board will look like:
0 0 0 1
1 0 1 0
1 1 1 0
1 0 0 1

After flipping at row 2 column 4, the board will look like:
0 0 0 0
1 0 0 1
1 1 1 1
1 0 0 1

After flipping at row 3 column 1, the board will look like:
0 0 0 0
0 0 0 1
0 0 1 1
0 0 0 1

After flipping at row 3 column 4, the board will look like:
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Another solution might be:
0 1 1 0
0 0 0 0
0 0 0 0
0 1 1 0
but this solution is lexicographically higher than the solution above.

HINT

Source

【BZOJ】1647: [Usaco2007 Open]Fliptile 翻格子游戏(暴力)的更多相关文章

  1. BZOJ 1647 [Usaco2007 Open]Fliptile 翻格子游戏:部分枚举 位运算

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1647 题意: 在一个n*m(1 <= n,m <= 15)的棋盘上,每一个格子 ...

  2. bzoj 1647: [Usaco2007 Open]Fliptile 翻格子游戏【dfs】

    这个可以用异或高斯消元,但是我不会呀我用的暴搜 2的m次方枚举第一行的翻转情况,然后后面的就定了,因为对于一个j位置,如果i-1的j位置需要翻,那么一定要翻i的j,因为这是i-1的j最后翻的机会 按字 ...

  3. 1647: [Usaco2007 Open]Fliptile 翻格子游戏

    1647: [Usaco2007 Open]Fliptile 翻格子游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 423  Solved: 173[ ...

  4. [Usaco2007 Open]Fliptile 翻格子游戏

    [Usaco2007 Open]Fliptile 翻格子游戏 题目 Farmer John knows that an intellectually satisfied cow is a happy ...

  5. [Usaco2007 Open]Fliptile 翻格子游戏题解

    问题 B: [Usaco2007 Open]Fliptile 翻格子游戏 时间限制: 5 Sec  内存限制: 128 MB 题目描述 Farmer John knows that an intell ...

  6. 【BZOJ 1647】[Usaco2007 Open]Fliptile 翻格子游戏 模拟、搜索

    第一步我们发现对于每一个格子,我们只有翻和不翻两种状态,我们发现一旦确定了第一行操作,那么第二行的操作也就随之确定了,因为第一行操作之后我们要想得到答案就得把第一行全部为0,那么第二行的每一个格子的操 ...

  7. [Usaco2007 Open]Fliptile 翻格子游戏 状态压缩

    考试想到了状压,苦于T1废掉太长时间,于是默默输出impossible.. 我们知道,一个格子的翻转受其翻转次数和它相邻翻转次数的影响. 由每一个位置操作两次相当于把它翻过来又翻回去,所以答案中每一个 ...

  8. [Usaco2007 Open]Fliptile 翻格子游戏 状压dp

    n,m<=15,直接搞肯定不行,考虑一行一行来, 每一行的状态只与三行有关,所以从第一行开始枚举,每一次让下面一行填上他上面那行的坑 最后一行必须要同时满足他自己和他上面那行,否则舍去 #inc ...

  9. [BZOJ 1647][USACO 2007 Open] Fliptile 翻格子游戏

    1647: [Usaco2007 Open]Fliptile 翻格子游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 702  Solved: 281[ ...

随机推荐

  1. Windows、mac字体安装教程

    请问字体如何安装? Win7.8.10安装字体方法: http://jingyan.baidu.com/article/14bd256e27c517bb6c26127c.html mac安装字体方法: ...

  2. sublime text 全局搜索快捷键

    sublime text 全局搜索快捷键 ctrl+shift+F

  3. 用sql语句查出和sql相关的性能计数器

    一台服务器上,用性能监视器死活显示不出来一部分计数器,没办法,用sql语句查了 --所有和sql相关的计数器 select * from sys.dm_os_performance_counters ...

  4. 如何阅读Android系统源码-收藏必备

    对于任何一个对Android开发感兴趣的人而言,对于android系统的学习必不可少.而学习系统最佳的方法就如linus所言:"RTFSC"(Read The Fucking So ...

  5. javascript 字符串中单引号和双引号区别

    最近在使用JavaScript编程,遇到使用字符串的情况. 以下是一些测试代码: var str = 'This is Jack'; var str2 = "This is Tom" ...

  6. CentOS 开机启动

    # vim /etc/rc.local 加入你想在开机后执行的脚本 source /etc/profile /usr/local/xx.sh 写第一句是想保证在执行脚本前系统环境变量有效,第二句才是真 ...

  7. 解析theme()

    drupal_render()只是对theme()的调用做了包装,真正做任务的还是theme(). function theme($hook, $variables = array()) { ... ...

  8. openvpn mac客户端tunnelblick连接后自动添加路由

    在openvpn 的服务器配置文件添加配置设置客户端连接后自动添加一条路由 示例: vim /etc/openvpn/server.conf # Push routes to the client t ...

  9. 用Visual studio2012在Windows8上开发内核驱动监视进程创建

    在Windows NT中,80386保护模式的“保护”比Windows 95中更坚固,这个“镀金的笼子”更加结实,更加难以打破.在Windows 95中,至少应用程序I/O操作是不受限制的,而在Win ...

  10. EF性能

    批量操作时,加上这句:Context.Configuration.AutoDetectChangesEnabled = false; 主要是取消跟踪,缩短对象添加到上下文的时间(非执行SQL的时间)