nim游戏

给定n堆物品,第i堆物品有Ai个,两名玩家轮流行动,每次可以任选一堆,取走任意多个物品,可把一堆取光,但不能不取。取走最后一件物品的人获胜。


定理:nim游戏先手必胜,当且仅当A1 xor A2 xor ... xor An != 0

xor 不进位加法

从无到有的过程是最难的,nim游戏是困扰了多少代人的难题!

定理证明(参考算阶)

#include <iostream>
using namespace std;
int main()
{
int n;cin >> n;
int res = 0;
while(n --)
{
int x; cin >> x;
res ^= x;
}
if(res) puts("Yes");
else cout << "No" << endl;
return 0;
}

Mex运算

Mex运算就是除去本身以外其他非负整数的集合中的最小值,如MEX{1}=0,MEX{0,1,2,4,5}=3

SG函数

在有向图游戏中,对于每个节点x,设从x出发共有k条有向边,分别到达节点y1,y2,···,yk,定义SG(x)为x的后继结点y1,y2,···,yk的SG函数值构成的集合再执行Mex运算的结果,即:
SG(X) = mex({SG(y1), SG(y2),···, SG(yk)})

多个SG游戏的最终结果为每个SG函数值的异或和,异或和为0即为必败点,反之为必胜点

  1. 集合-Nim游戏

    题目

    提交记录

    讨论

    题解

    视频讲解

给定 n

堆石子以及一个由 k

个不同正整数构成的数字集合 S

现在有两位玩家轮流操作,每次操作可以从任意一堆石子中拿取石子,每次拿取的石子数量必须包含于集合 S

,最后无法进行操作的人视为失败。

问如果两人都采用最优策略,先手是否必胜。

输入格式

第一行包含整数 k

,表示数字集合 S

中数字的个数。

第二行包含 k

个整数,其中第 i

个整数表示数字集合 S

中的第 i

个数 si

第三行包含整数 n

第四行包含 n

个整数,其中第 i

个整数表示第 i

堆石子的数量 hi

输出格式

如果先手方必胜,则输出 Yes。

否则,输出 No。

数据范围

1≤n,k≤100

,

1≤si,hi≤10000

输入样例:

2

2 5

3

2 4 7

输出样例:

Yes

#include <iostream>
#include <cstring>
#include <unordered_set>
using namespace std;
const int N = 110, M = 10010;
int n, k;
int s[N], f[M]; //用记忆化搜索实现求sg函数
int sg(int x)
{
//定义一个哈希表存x能到达的所有状态
unordered_set<int>S;
//如果当前状态已经到达过了,我们就直接返回,保证每个状态只到达过一次,这样便能保证每个状态不会重复搜索
if(f[x] != -1) return f[x];
//枚举当前状态能到达的所有状态也就是当前结点的所有后继节点
for(int i = 0; i < n; ++ i)
{
int t = s[i];
if(x - t >= 0) S.insert(sg(x - t));
}
//对当前x的所有后继结点进行mex操作
for(int i = 0; ; ++ i)
if(!S.count(i)) return f[x] = i;
} int main()
{
cin >> n;
memset(f, -1, sizeof f);
for(int i = 0; i < n; ++ i) cin >> s[i];
cin >> k;
int res = 0;
while(k --)
{
int x;cin >>x;
res ^= sg(x);
}
if(res) cout << "Yes" << endl;
else cout << "No" << endl;
return 0;
}

博弈论nim游戏的更多相关文章

  1. 博弈论之Nim游戏

    Nim游戏是组合游戏(Combinatorial Games)的一种,属于“Impartial Combinatorial Games”(以下简称ICG). 通常的Nim游戏的定义是这样的:有若干堆石 ...

  2. 博弈论入门之nim游戏

    更好的阅读体验点这里 nim游戏 nim游戏 有两个顶尖聪明的人在玩游戏,游戏规则是这样的: 有\(n\)堆石子,两个人可以从任意一堆石子中拿任意多个石子(不能不拿),没法拿的人失败.问谁会胜利 ni ...

  3. 【博弈论】浅谈泛Nim游戏

    Nim游戏在ACM中碰到了,就拎出来写写. 一般Nim游戏:有n堆石子,每堆石子有$a_i$个,每次可以取每堆石子中$[0,a_i-1]$,问先手是否有必胜策略. 泛Nim游戏:每堆石子有$a_i$个 ...

  4. [您有新的未分配科技点]博弈论入门:被博弈论支配的恐惧(Nim游戏,SG函数)

    今天初步学习了一下博弈论……感觉真的是好精妙啊……希望这篇博客可以帮助到和我一样刚学习博弈论的同学们. 博弈论,又被称为对策论,被用于考虑游戏中个体的预测行为和实际行为,并研究他们的应用策略.(其实这 ...

  5. Nim游戏与SG函数 ——博弈论小结

    写这篇博客之前,花了许久时间来搞这个SG函数,倒是各路大神的论文看的多,却到底没几个看懂的.还好网上一些大牛博客还是性价比相当高的,多少理解了些,也自己通过做一些题加深了下了解. 既然是博弈,经典的N ...

  6. BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论

    BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作 ...

  7. (博弈论)51NOD 1069 Nim游戏

    有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N及每堆石子的数量,问最后 ...

  8. 洛谷$P$4301 $[CQOI2013]$新$Nim$游戏 线性基+博弈论

    正解:线性基 解题报告: 传送门! 这题其实就是个博弈论+线性基,,,而且博弈论还是最最基础的那个结论,然后线性基也是最最基础的那个板子$QwQ$ 首先做这题的话需要一点点儿博弈论的小技能,,,这题的 ...

  9. 博弈论入门——Nim游戏引入

    说实话,我真的对这个游戏看得是一脸懵逼,因为(我太弱了)我没有明白一些变量的意思,所以一直很懵,现在才明白,这让我明白博弈论(还可以骗钱)博大精深; 以下是我自己思考的过程,也许不严谨,但是最终明白了 ...

  10. 博弈论(nim游戏,SG函数)

    说到自己,就是个笑话.思考问题从不清晰,sg函数的问题证明方法就在眼前可却要弃掉.不过自己理解的也并不透彻,做题也不太行.耳边时不时会想起alf的:"行不行!" 基本的小概念 这里 ...

随机推荐

  1. NodeJS使用npm安装vue脚手架

    开发环境准备:Windows10.Windows11 NodeJS,安装官网最新LTS版即可 下载地址:https://nodejs.org/安装一路下一步,默认即可 ================ ...

  2. 【转载】Linux虚拟化KVM-Qemu分析(四)之CPU虚拟化(2)

    原文信息: 作者:LoyenWang 出处:https://www.cnblogs.com/LoyenWang/ 公众号:LoyenWang 版权:本文版权归作者和博客园共有 转载:欢迎转载,但未经作 ...

  3. Blazor前后端框架Known-V1.2.6

    V1.2.6 Known是基于C#和Blazor开发的前后端分离快速开发框架,开箱即用,跨平台,一处代码,多处运行. Gitee: https://gitee.com/known/Known Gith ...

  4. 记录一次线上服务CPU飙高问题

    2023.07.20 20:01:38线上一个服务发生了CPU过高的告警, 看告警信息当前的CPU使用率已经达到了82.65%,问题已经很严重,赶紧开始排查起来.来复盘下如何排查这类问题, 一.排查方 ...

  5. 【工具推荐】github打不开or加载慢?不用配置hosts,教你一键加速!

    不说废话 下载watt toolkit(原名steam++) 官方地址: Watt Toolkit - 瓦特工具箱(Steam++官网) (steampp.net) 安装完后选中,点击一键加速即可. ...

  6. 硬件管理平台 - 公共项目搭建(Nancy部分)

    项目变更 之前使用的是Nancy库进行项目搭建的,使用的Nuget版本及其他引用如下 <?xml version="1.0" encoding="utf-8&quo ...

  7. SpringBoot对接OpenAI

    SpringBoot对接OpenAI 随着人工智能技术的飞速发展,越来越多的开发者希望将智能功能集成到自己的应用中,以提升用户体验和应用的功能.OpenAI作为一家领先的人工智能公司,提供了许多先进的 ...

  8. 将excel中的多列内容合并为一列

    有需求,就有方法.实现如下: 1. 需求: 将A.B两列数据合并为一列 2. 方法: 2.1 在C列输入A.B两列合并后的数据:501001001 2.2 选中C列,按组合键 Ctrl+E,在C列中就 ...

  9. SpringBoot 测试实践 - 1:常用的工具

    我自己接触到的一些商业或是开源的基于 SpringBoot 项目,它们大部分是没有测试代码的,test 文件夹只有脚手架初始化生成的那个测试类,跟不同的开发聊到这个话题,发现他们中的大部分没有写测试的 ...

  10. CodeForces 1311E Construct the Binary Tree

    题意 给定\(n\)和\(d\),构造一颗\(n\)个节点的二叉树(以\(1\)为根),所有节点到\(1\)的距离和为\(d\),不行输出\(NO\),否则输出\(YES\)和\(2\)-\(n\)的 ...