博弈论nim游戏
nim游戏
给定n堆物品,第i堆物品有Ai个,两名玩家轮流行动,每次可以任选一堆,取走任意多个物品,可把一堆取光,但不能不取。取走最后一件物品的人获胜。
定理:nim游戏先手必胜,当且仅当A1 xor A2 xor ... xor An != 0
xor 不进位加法
从无到有的过程是最难的,nim游戏是困扰了多少代人的难题!
定理证明(参考算阶)
#include <iostream>
using namespace std;
int main()
{
int n;cin >> n;
int res = 0;
while(n --)
{
int x; cin >> x;
res ^= x;
}
if(res) puts("Yes");
else cout << "No" << endl;
return 0;
}
Mex运算
Mex运算就是除去本身以外其他非负整数的集合中的最小值,如MEX{1}=0,MEX{0,1,2,4,5}=3
SG函数
在有向图游戏中,对于每个节点x,设从x出发共有k条有向边,分别到达节点y1,y2,···,yk,定义SG(x)为x的后继结点y1,y2,···,yk的SG函数值构成的集合再执行Mex运算的结果,即:
SG(X) = mex({SG(y1), SG(y2),···, SG(yk)})
多个SG游戏的最终结果为每个SG函数值的异或和,异或和为0即为必败点,反之为必胜点
- 集合-Nim游戏
题目
提交记录
讨论
题解
视频讲解
给定 n
堆石子以及一个由 k
个不同正整数构成的数字集合 S
。
现在有两位玩家轮流操作,每次操作可以从任意一堆石子中拿取石子,每次拿取的石子数量必须包含于集合 S
,最后无法进行操作的人视为失败。
问如果两人都采用最优策略,先手是否必胜。
输入格式
第一行包含整数 k
,表示数字集合 S
中数字的个数。
第二行包含 k
个整数,其中第 i
个整数表示数字集合 S
中的第 i
个数 si
。
第三行包含整数 n
。
第四行包含 n
个整数,其中第 i
个整数表示第 i
堆石子的数量 hi
。
输出格式
如果先手方必胜,则输出 Yes。
否则,输出 No。
数据范围
1≤n,k≤100
,
1≤si,hi≤10000
输入样例:
2
2 5
3
2 4 7
输出样例:
Yes
#include <iostream>
#include <cstring>
#include <unordered_set>
using namespace std;
const int N = 110, M = 10010;
int n, k;
int s[N], f[M];
//用记忆化搜索实现求sg函数
int sg(int x)
{
//定义一个哈希表存x能到达的所有状态
unordered_set<int>S;
//如果当前状态已经到达过了,我们就直接返回,保证每个状态只到达过一次,这样便能保证每个状态不会重复搜索
if(f[x] != -1) return f[x];
//枚举当前状态能到达的所有状态也就是当前结点的所有后继节点
for(int i = 0; i < n; ++ i)
{
int t = s[i];
if(x - t >= 0) S.insert(sg(x - t));
}
//对当前x的所有后继结点进行mex操作
for(int i = 0; ; ++ i)
if(!S.count(i)) return f[x] = i;
}
int main()
{
cin >> n;
memset(f, -1, sizeof f);
for(int i = 0; i < n; ++ i) cin >> s[i];
cin >> k;
int res = 0;
while(k --)
{
int x;cin >>x;
res ^= sg(x);
}
if(res) cout << "Yes" << endl;
else cout << "No" << endl;
return 0;
}
博弈论nim游戏的更多相关文章
- 博弈论之Nim游戏
Nim游戏是组合游戏(Combinatorial Games)的一种,属于“Impartial Combinatorial Games”(以下简称ICG). 通常的Nim游戏的定义是这样的:有若干堆石 ...
- 博弈论入门之nim游戏
更好的阅读体验点这里 nim游戏 nim游戏 有两个顶尖聪明的人在玩游戏,游戏规则是这样的: 有\(n\)堆石子,两个人可以从任意一堆石子中拿任意多个石子(不能不拿),没法拿的人失败.问谁会胜利 ni ...
- 【博弈论】浅谈泛Nim游戏
Nim游戏在ACM中碰到了,就拎出来写写. 一般Nim游戏:有n堆石子,每堆石子有$a_i$个,每次可以取每堆石子中$[0,a_i-1]$,问先手是否有必胜策略. 泛Nim游戏:每堆石子有$a_i$个 ...
- [您有新的未分配科技点]博弈论入门:被博弈论支配的恐惧(Nim游戏,SG函数)
今天初步学习了一下博弈论……感觉真的是好精妙啊……希望这篇博客可以帮助到和我一样刚学习博弈论的同学们. 博弈论,又被称为对策论,被用于考虑游戏中个体的预测行为和实际行为,并研究他们的应用策略.(其实这 ...
- Nim游戏与SG函数 ——博弈论小结
写这篇博客之前,花了许久时间来搞这个SG函数,倒是各路大神的论文看的多,却到底没几个看懂的.还好网上一些大牛博客还是性价比相当高的,多少理解了些,也自己通过做一些题加深了下了解. 既然是博弈,经典的N ...
- BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论
BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作 ...
- (博弈论)51NOD 1069 Nim游戏
有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N及每堆石子的数量,问最后 ...
- 洛谷$P$4301 $[CQOI2013]$新$Nim$游戏 线性基+博弈论
正解:线性基 解题报告: 传送门! 这题其实就是个博弈论+线性基,,,而且博弈论还是最最基础的那个结论,然后线性基也是最最基础的那个板子$QwQ$ 首先做这题的话需要一点点儿博弈论的小技能,,,这题的 ...
- 博弈论入门——Nim游戏引入
说实话,我真的对这个游戏看得是一脸懵逼,因为(我太弱了)我没有明白一些变量的意思,所以一直很懵,现在才明白,这让我明白博弈论(还可以骗钱)博大精深; 以下是我自己思考的过程,也许不严谨,但是最终明白了 ...
- 博弈论(nim游戏,SG函数)
说到自己,就是个笑话.思考问题从不清晰,sg函数的问题证明方法就在眼前可却要弃掉.不过自己理解的也并不透彻,做题也不太行.耳边时不时会想起alf的:"行不行!" 基本的小概念 这里 ...
随机推荐
- 图片转ASCII字符图案的原理(可调整亮度对比度 宽高度)
来, 先看效果哈哈哈哈! 演示地址: http://ascii-picture.imlht.com/ "\` """ . "\`"" ...
- 解决phpMyAdmin点击"结构"列页面失去响应的问题
最后更新时间 2017-12-05. 我的环境: phpMyAdmin:4.0.4.1 PHP:5.6.11 第一步 关闭自动更新 打开 ./libraries 目录下的 vendor_config. ...
- Error: Could not open client transport with JDBC Uri: jdbc:hive2://localhost:10000: java.net.ConnectException: 拒绝连接 (Connection refused) (state=08S01,code=0)
一:启动hiveserver2服务 二:启动beeline 三:连接hiveserver2(下面的1000000端口号适当改小写因为其超出最大端口号的范围建议改为10000) 如果启动不成功实现我们先 ...
- node:spawn npm ENOENT
错误背景 封装脚手架时报错 错误原因 windows系统原因 解决方案 const createProjectAction = async (project) => { console.log( ...
- 利用文件包含漏洞包含ssh日志拿shell
今天看文章学了一招,有包含漏洞无法传文件的时候用 目标服务器环境为ubuntu,ssh登录日志文件是/var/log/auth.log 找个Linux的环境执行ssh '<? phpinfo() ...
- 使用LabVIEW 实现物体识别、图像分割、文字识别、人脸识别等深度视觉
前言 哈喽,各位朋友们,这里是virobotics(仪酷智能),这两天有朋友私信问之前给大家介绍的工具包都可以实现什么功能,最新的一些模型能否使用工具包加载,今天就给大家介绍一下博主目前使用工具包已经 ...
- CAJViewer卡的解决办法
在做毕业设计时,使用了CAJViewer7.2版本的阅读器,使用起来非常卡,翻页总是不流畅,体验感极差. 最后实在受不了了,去百度了一下,在贴吧中看到了疑似解决方案,尝试了一下,真的不卡了.所以特此写 ...
- 使用MD5算法和sha512sum校验和检验文件完整性
目录 一.前言 二.MD5算法简介 三.什么是校验和 四.使用MD5算法和sha512sum校验和检验文件完整性 五.总结 一.前言 在我们日常生活中,无论是下载文件.传输数据还是备份重要信息,如何确 ...
- DesignPattern-part1
title: "modern C++ DesignPattern-Part1" date: 2018-04-03T16:06:33+08:00 lastmod: 2018-04-0 ...
- webgl 刷底色的基本步骤
1.在html中建立画布 <canvas id="canvas"><canvas> 2.在js中获取canvas画布 const canvas = docu ...