正如你目前所看到的,神经网络的性能非常依赖超参数。因此,了解这些参数如何影响网络变得至关重要。

常见的超参数是学习率、正则化器、正则化系数、隐藏层的维数、初始权重值,甚至选择什么样的优化器优化权重和偏置。

超参数调整过程

  1. 调整超参数的第一步是构建模型。与之前一样,在 TensorFlow 中构建模型。
  2. 添加一种方法将模型保存在 model_file 中。在 TensorFlow 中,可以使用 Saver 对象来完成。然后保存在会话中:

     
  3. 确定要调整的超参数,并为超参数选择可能的值。在这里,你可以做随机的选择、固定间隔值或手动选择。三者分别称为随机搜索、网格搜索和手动搜索。例如,下面是用来调节学习率的代码:

     
  4. 选择对损失函数给出最佳响应的参数。所以,可以在开始时将损失函数的最大值定义为 best_loss(如果是精度,可以选择将自己期望得到的准确率设为模型的最低精度):

     
  5. 把你的模型放在 for 循环中,然后保存任何能更好估计损失的模型:

除此之外,贝叶斯优化也可以用来调整超参数。其中,用高斯过程定义了一个采集函数。高斯过程使用一组先前评估的参数和得出的精度来假定未观察到的参数。采集函数使用这一信息来推测下一组参数。https://github.com/lucfra/RFHO上有一个包装器用于基于梯度的超参数优化。

TensorFlow从0到1之TensorFlow超参数及其调整(24)的更多相关文章

  1. TensorFlow从0到1之TensorFlow多层感知机函数逼近过程(23)

    Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明 ...

  2. TensorFlow从0到1之TensorFlow实现反向传播算法(21)

    反向传播(BPN)算法是神经网络中研究最多.使用最多的算法之一,它用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重. 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信 ...

  3. TensorFlow从0到1之TensorFlow多层感知机实现MINIST分类(22)

    TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.它使用梯度自动更新用变量定义的张量.本节将使用 TensorFlow 优化器来训练网络. 前面章节中,我们定 ...

  4. TensorFlow从0到1之TensorFlow实现单层感知机(20)

    简单感知机是一个单层神经网络.它使用阈值激活函数,正如 Marvin Minsky 在论文中所证明的,它只能解决线性可分的问题.虽然这限制了单层感知机只能应用于线性可分问题,但它具有学习能力已经很好了 ...

  5. TensorFlow从0到1之TensorFlow优化器(13)

    高中数学学过,函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本节将介绍如何使 ...

  6. TensorFlow从0到1之TensorFlow Keras及其用法(25)

    Keras 是与 TensorFlow 一起使用的更高级别的作为后端的 API.添加层就像添加一行代码一样简单.在模型架构之后,使用一行代码,你可以编译和拟合模型.之后,它可以用于预测.变量声明.占位 ...

  7. TensorFlow从0到1之TensorFlow常用激活函数(19)

    每个神经元都必须有激活函数.它们为神经元提供了模拟复杂非线性数据集所必需的非线性特性.该函数取所有输入的加权和,进而生成一个输出信号.你可以把它看作输入和输出之间的转换.使用适当的激活函数,可以将输出 ...

  8. TensorFlow从0到1之TensorFlow逻辑回归处理MNIST数据集(17)

    本节基于回归学习对 MNIST 数据集进行处理,但将添加一些 TensorBoard 总结以便更好地理解 MNIST 数据集. MNIST由https://www.tensorflow.org/get ...

  9. TensorFlow从0到1之TensorFlow csv文件读取数据(14)

    大多数人了解 Pandas 及其在处理大数据文件方面的实用性.TensorFlow 提供了读取这种文件的方法. 前面章节中,介绍了如何在 TensorFlow 中读取文件,本节将重点介绍如何从 CSV ...

随机推荐

  1. 请求地址中出现中文或者URL作为参数,为避免含有特殊字符截断URL,需要编码

    URL中担心出现特殊符号!*'();:@&=+$,/?%#[] 从而截断完整的URL,需要对URL编码,服务端对URL再解码 参考: https://blog.csdn.net/aaaaazq ...

  2. PAT-1058 A+B in Hogwarts (进制转换)

    1058. A+B in Hogwarts If you are a fan of Harry Potter, you would know the world of magic has its ow ...

  3. 填坑!线上Presto查询Hudi表异常排查

    1. 引入 线上用户反馈使用Presto查询Hudi表出现错误,而将Hudi表的文件单独创建parquet类型表时查询无任何问题,关键报错信息如下 40931f6e-3422-4ffd-a692-6c ...

  4. DQN(Deep Q-learning)入门教程(一)之强化学习介绍

    什么是强化学习? 强化学习(Reinforcement learning,简称RL)是和监督学习,非监督学习并列的第三种机器学习方法,如下图示: 首先让我们举一个小时候的例子: 你现在在家,有两个动作 ...

  5. channelartlist标签的使用

    用来获取当前频道的下级栏目的内容列表标签 . type=“top”表示顶级栏目 ,typeid='top' 限制上级栏目ID:如果只要调用其中几个频道的内容可以用{dede:channelartlis ...

  6. PHP文件目录操作

    目录操作 is_dir ( $path ) 判断当前路径是否为目录 ,返回布尔 opendir ( $path ) 打开路径目录,返回资源 readdir ( $handle ) 读取当前打开目录下一 ...

  7. Spring_Bean的配置方式

    1.通过工厂方法配置bean beans-factory.xml <?xml version="1.0" encoding="UTF-8"?> &l ...

  8. ​云中奈飞(一):Netflix的上云之旅

    作者按: Netflix(译为奈飞/网飞)公司自1997年创立以来,已发展成为美国最大的互联网流媒体服务商.它从2008到2015年间长达七年的将其所有IT系统从自有数据中心迁移到AWS之上的旅程,在 ...

  9. 11 . Python3之异常,调试和测试

    12.Python3入门之异常.调试和测试 在程序运行过程中,总会遇到各种各样的错误. 有的错误是程序编写有问题造成的,比如本应该输出整数结果输出了字符串,这种错误我们通常称之为bug,bug是必须修 ...

  10. Java实现 LeetCode 810 黑板异或游戏 (分析)

    810. 黑板异或游戏 一个黑板上写着一个非负整数数组 nums[i] .小红和小明轮流从黑板上擦掉一个数字,小红先手.如果擦除一个数字后,剩余的所有数字按位异或运算得出的结果等于 0 的话,当前玩家 ...