正如你目前所看到的,神经网络的性能非常依赖超参数。因此,了解这些参数如何影响网络变得至关重要。

常见的超参数是学习率、正则化器、正则化系数、隐藏层的维数、初始权重值,甚至选择什么样的优化器优化权重和偏置。

超参数调整过程

  1. 调整超参数的第一步是构建模型。与之前一样,在 TensorFlow 中构建模型。
  2. 添加一种方法将模型保存在 model_file 中。在 TensorFlow 中,可以使用 Saver 对象来完成。然后保存在会话中:

     
  3. 确定要调整的超参数,并为超参数选择可能的值。在这里,你可以做随机的选择、固定间隔值或手动选择。三者分别称为随机搜索、网格搜索和手动搜索。例如,下面是用来调节学习率的代码:

     
  4. 选择对损失函数给出最佳响应的参数。所以,可以在开始时将损失函数的最大值定义为 best_loss(如果是精度,可以选择将自己期望得到的准确率设为模型的最低精度):

     
  5. 把你的模型放在 for 循环中,然后保存任何能更好估计损失的模型:

除此之外,贝叶斯优化也可以用来调整超参数。其中,用高斯过程定义了一个采集函数。高斯过程使用一组先前评估的参数和得出的精度来假定未观察到的参数。采集函数使用这一信息来推测下一组参数。https://github.com/lucfra/RFHO上有一个包装器用于基于梯度的超参数优化。

TensorFlow从0到1之TensorFlow超参数及其调整(24)的更多相关文章

  1. TensorFlow从0到1之TensorFlow多层感知机函数逼近过程(23)

    Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明 ...

  2. TensorFlow从0到1之TensorFlow实现反向传播算法(21)

    反向传播(BPN)算法是神经网络中研究最多.使用最多的算法之一,它用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重. 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信 ...

  3. TensorFlow从0到1之TensorFlow多层感知机实现MINIST分类(22)

    TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.它使用梯度自动更新用变量定义的张量.本节将使用 TensorFlow 优化器来训练网络. 前面章节中,我们定 ...

  4. TensorFlow从0到1之TensorFlow实现单层感知机(20)

    简单感知机是一个单层神经网络.它使用阈值激活函数,正如 Marvin Minsky 在论文中所证明的,它只能解决线性可分的问题.虽然这限制了单层感知机只能应用于线性可分问题,但它具有学习能力已经很好了 ...

  5. TensorFlow从0到1之TensorFlow优化器(13)

    高中数学学过,函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本节将介绍如何使 ...

  6. TensorFlow从0到1之TensorFlow Keras及其用法(25)

    Keras 是与 TensorFlow 一起使用的更高级别的作为后端的 API.添加层就像添加一行代码一样简单.在模型架构之后,使用一行代码,你可以编译和拟合模型.之后,它可以用于预测.变量声明.占位 ...

  7. TensorFlow从0到1之TensorFlow常用激活函数(19)

    每个神经元都必须有激活函数.它们为神经元提供了模拟复杂非线性数据集所必需的非线性特性.该函数取所有输入的加权和,进而生成一个输出信号.你可以把它看作输入和输出之间的转换.使用适当的激活函数,可以将输出 ...

  8. TensorFlow从0到1之TensorFlow逻辑回归处理MNIST数据集(17)

    本节基于回归学习对 MNIST 数据集进行处理,但将添加一些 TensorBoard 总结以便更好地理解 MNIST 数据集. MNIST由https://www.tensorflow.org/get ...

  9. TensorFlow从0到1之TensorFlow csv文件读取数据(14)

    大多数人了解 Pandas 及其在处理大数据文件方面的实用性.TensorFlow 提供了读取这种文件的方法. 前面章节中,介绍了如何在 TensorFlow 中读取文件,本节将重点介绍如何从 CSV ...

随机推荐

  1. PAT-1059 Prime Factors (素数因子)

    1059. Prime Factors Given any positive integer N, you are supposed to find all of its prime factors, ...

  2. 【Mood】出大问题(最近很喜欢说这句话)

    开学两周啦,第一周来了一次开学考,是崩了,还好没公布成绩和排名. 这两周下了一个很大的决心,准备转型/专注文化课,初三一次信息学奥赛比赛后就不学了,先保证能上高中重点班(如果有的话). 因为现在起步太 ...

  3. ES[7.6.x]学习笔记(十一)与SpringBoot结合

    在前面的章节中,我们把ES的基本功能都给大家介绍完了,从ES的搭建.创建索引.分词器.到数据的查询,大家发现,我们都是通过ES的API去进行调用,那么,我们在项目当中怎么去使用ES呢?这一节,我们就看 ...

  4. git简单的使用步骤

    Git介绍 Git是分布式版本控制系统 集中式VS分布式,SVN VS Git 1)SVN和Git主要的区别在于历史版本维护的位置 2)这两个工具主要的区别在于历史版本维护的位置Git本地仓库包含代码 ...

  5. springboot系列——重试机制原理和应用,还有比这个讲的更好的吗(附完整源码)

    1. 理解重试机制 2. 总结重试机制使用场景 3. spring-retry重试组件 4. 手写一个基于注解的重试组件 5. 重试机制下会出现的问题 6. 模板方法设计模式实现异步重试机制 如果有, ...

  6. 一文让你快速上手 Mockito 单元测试框架

    前言 在计算机编程中,单元测试是一种软件测试方法,通过该方法可以测试源代码的各个单元功能是否适合使用.为代码编写单元测试有很多好处,包括可以及早的发现代码错误,促进更改,简化集成,方便代码重构以及许多 ...

  7. 04.Django-视图与路由

    视图层 1. HTTP请求 HttpRequest对象 request.path #使用GET方法时,只会得到路径. request.get_full_path() #使用GET方法时,会得到包括路径 ...

  8. 小技巧:用 GitBook 组织 Markdown 文档

    喜欢用 Markdown 写文档,那怎么把一个个 Markdown 文档组成在一起呢? 这篇文章,分享了一个用 GitBook 来组织 Markdown 文档的办法.一起了解下吧. Markdown ...

  9. 【HBase】HBase架构图

  10. Nginx 笔记(一)nginx简介与安装

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) Nginx 简介: 1.介绍 nginx 的应用场景和具体可以做什么事情 2.介绍什么是反向代理 3.介 ...