正如你目前所看到的,神经网络的性能非常依赖超参数。因此,了解这些参数如何影响网络变得至关重要。

常见的超参数是学习率、正则化器、正则化系数、隐藏层的维数、初始权重值,甚至选择什么样的优化器优化权重和偏置。

超参数调整过程

  1. 调整超参数的第一步是构建模型。与之前一样,在 TensorFlow 中构建模型。
  2. 添加一种方法将模型保存在 model_file 中。在 TensorFlow 中,可以使用 Saver 对象来完成。然后保存在会话中:

     
  3. 确定要调整的超参数,并为超参数选择可能的值。在这里,你可以做随机的选择、固定间隔值或手动选择。三者分别称为随机搜索、网格搜索和手动搜索。例如,下面是用来调节学习率的代码:

     
  4. 选择对损失函数给出最佳响应的参数。所以,可以在开始时将损失函数的最大值定义为 best_loss(如果是精度,可以选择将自己期望得到的准确率设为模型的最低精度):

     
  5. 把你的模型放在 for 循环中,然后保存任何能更好估计损失的模型:

除此之外,贝叶斯优化也可以用来调整超参数。其中,用高斯过程定义了一个采集函数。高斯过程使用一组先前评估的参数和得出的精度来假定未观察到的参数。采集函数使用这一信息来推测下一组参数。https://github.com/lucfra/RFHO上有一个包装器用于基于梯度的超参数优化。

TensorFlow从0到1之TensorFlow超参数及其调整(24)的更多相关文章

  1. TensorFlow从0到1之TensorFlow多层感知机函数逼近过程(23)

    Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明 ...

  2. TensorFlow从0到1之TensorFlow实现反向传播算法(21)

    反向传播(BPN)算法是神经网络中研究最多.使用最多的算法之一,它用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重. 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信 ...

  3. TensorFlow从0到1之TensorFlow多层感知机实现MINIST分类(22)

    TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.它使用梯度自动更新用变量定义的张量.本节将使用 TensorFlow 优化器来训练网络. 前面章节中,我们定 ...

  4. TensorFlow从0到1之TensorFlow实现单层感知机(20)

    简单感知机是一个单层神经网络.它使用阈值激活函数,正如 Marvin Minsky 在论文中所证明的,它只能解决线性可分的问题.虽然这限制了单层感知机只能应用于线性可分问题,但它具有学习能力已经很好了 ...

  5. TensorFlow从0到1之TensorFlow优化器(13)

    高中数学学过,函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本节将介绍如何使 ...

  6. TensorFlow从0到1之TensorFlow Keras及其用法(25)

    Keras 是与 TensorFlow 一起使用的更高级别的作为后端的 API.添加层就像添加一行代码一样简单.在模型架构之后,使用一行代码,你可以编译和拟合模型.之后,它可以用于预测.变量声明.占位 ...

  7. TensorFlow从0到1之TensorFlow常用激活函数(19)

    每个神经元都必须有激活函数.它们为神经元提供了模拟复杂非线性数据集所必需的非线性特性.该函数取所有输入的加权和,进而生成一个输出信号.你可以把它看作输入和输出之间的转换.使用适当的激活函数,可以将输出 ...

  8. TensorFlow从0到1之TensorFlow逻辑回归处理MNIST数据集(17)

    本节基于回归学习对 MNIST 数据集进行处理,但将添加一些 TensorBoard 总结以便更好地理解 MNIST 数据集. MNIST由https://www.tensorflow.org/get ...

  9. TensorFlow从0到1之TensorFlow csv文件读取数据(14)

    大多数人了解 Pandas 及其在处理大数据文件方面的实用性.TensorFlow 提供了读取这种文件的方法. 前面章节中,介绍了如何在 TensorFlow 中读取文件,本节将重点介绍如何从 CSV ...

随机推荐

  1. ShoneSharp语言(S#)的设计和使用介绍系列(9)— 一等公民“函数“爱炫巧

    ShoneSharp语言(S#)的设计和使用介绍 系列(9)— 一等公民“函数“爱炫巧 作者:Shone 声明:原创文章欢迎转载,但请注明出处,https://www.cnblogs.com/Shon ...

  2. mantisbt2.22.1 中使用自带的phpmailer发送邮件(实测可用)

    mantis最新版本安装无难度,直接集成LAMP环境,解压放到web目录下运行,按界面显示一步步操作. 1.前提默认已安装好mantis,自带phpmailer的路径为:mantisbt2/vendo ...

  3. uniapp轻轻松松开发各种类型的小程序

    1.前言 现在移动端用户使用量占据了市场大部分的比例,今天 给大家说说怎么去开发一个小程序,今天使用的是uniapp 2.什么是uniapp uni-app 是一个使用 Vue.js 开发所有前端应用 ...

  4. C# 基础之参数修饰符

    参数传参的时候一共有四种传递方式: 一.无修饰符传参 也就是说没有传参修饰符,这种情况传过去的是一个副本,本体是不会被改变的 二.out传参修饰符 在传参的参数全面加一个out: public voi ...

  5. python pexpect总结

    基本使用流程 pexpect 的使用说来说去,就是围绕3个关键命令做操作: 首先用 spawn 来执行一个程序 然后用 expect 来等待指定的关键字,这个关键字是被执行的程序打印到标准输出上面的 ...

  6. Java-语言基础梳理

    1.java命名规范 包名:全小写 类名,接口名:首字母大写 变量名,方法名:第一个单词皆字母小写,后面单词首字母大写 常量名:所有字母都大写 2.变量 2.1 注意事项 作用域:一对{}之间有用 必 ...

  7. vue 使用 elementUI 和 antd 的细微差别

    Checkbox a-checkbox 没有value属性,绑定用checked Collapse 使用折叠面板的时候,antd 的层级关系是 .ant-collapse >.ant-colla ...

  8. Rocket - decode - Simplify

    https://mp.weixin.qq.com/s/YWXYNaRU-DbLOMxpzF2bpQ   介绍Simplify如何简化解码逻辑.     1. 使用   Simplify在DecodeL ...

  9. Java实现 LeetCode 728 自除数(暴力)

    728. 自除数 自除数 是指可以被它包含的每一位数除尽的数. 例如,128 是一个自除数,因为 128 % 1 == 0,128 % 2 == 0,128 % 8 == 0. 还有,自除数不允许包含 ...

  10. Java实现 LeetCode 605 种花问题(边界问题)

    605. 种花问题 假设你有一个很长的花坛,一部分地块种植了花,另一部分却没有.可是,花卉不能种植在相邻的地块上,它们会争夺水源,两者都会死去. 给定一个花坛(表示为一个数组包含0和1,其中0表示没种 ...