Flink(五) —— DataStream API
Source
从自定义的集合中读取数据
/**
* 从集合中读取数据
*/
def readDataFromCollection(): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
// 1.从自定义的集合中读取数据
val list = List(
SensorReading("sensor1", 153242, 35.8),
SensorReading("sensor2", 153222, 15.4),
SensorReading("sensor3", 153142, 6.7),
SensorReading("sensor4", 151242, 38.7))
val stream1 = env.fromCollection(list)
stream1.print("stream1").setParallelism(1)
env.execute("source test")
}
从Kafka中读取数据
引入依赖
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.10_2.11</artifactId>
<version>1.7.2</version>
</dependency>
代码
/**
* 从kafka中读取数据
*/
def readDataFromKafka(): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
val props = new Properties()
props.setProperty("bootstrap.servers", "localhost:9092")
props.setProperty("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
props.setProperty("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")
props.setProperty("group.id", "flink-demo")
props.setProperty("auto.offset.reset", "latest")
val stream1 = env.addSource(new FlinkKafkaConsumer010[String]("flinkdemo",new SimpleStringSchema(),props))
stream1.print("stream1").setParallelism(1)
env.execute("source test")
}
从自定义的Source中读取数据
class SensorSource() extends SourceFunction[SensorReading] {
var running: Boolean = true
// 取消数据源的生成
override def cancel(): Unit = {
running = false
}
// 生成数据
override def run(sourceContext: SourceContext[SensorReading]): Unit = {
// 初始化一个随机数发生器
val rand = new Random()
var curTemp = 1.to(10).map(
i => ("sensor_" + i, 60 + rand.nextGaussian() * 20)
)
while (running) {
curTemp = curTemp.map(
t => (t._1, t._2 + rand.nextGaussian())
)
val curTime = System.currentTimeMillis()
curTemp.foreach(
t => sourceContext.collect(SensorReading(t._1, curTime, t._2))
)
Thread.sleep(500)
}
}
}
Transform
样例数据
senor_1,1,10
senor_2,2,20
senor_3,3,40
senor_4,4,30
senor_5,5,30
senor_6,6,60
senor_1,7,70
map、reduce、keyBy
map
- DataStream -> DataStream
- 通过应用给定的函数,对原先DataStream中的每个元素进行处理,获得一个新的DataStream
keyBy
- DataStream -> KeyedStream[T,JavaTuple]
- 对DataStream中的元素按照给定的表达式进行分组
reduce
- KeyedStream -> DataStream
- 通过规约原有DataStream中的元素,返回一个新的DataStream
/**
* 使用map、reduce
*/
def testMap(): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)
val streamFromFile = env.readTextFile("senor.txt")
val dataStream: DataStream[SensorReading] = streamFromFile.map(data => {
val dataArray = data.split(",")
SensorReading(dataArray(0).trim, dataArray(1).toLong, dataArray(2).trim.toDouble)
})
.keyBy("id")
.reduce((x, y) => {
SensorReading(x.id, x.timestamp + 1, y.temperature + x.temperature)
})
dataStream.print()
env.execute()
}
split、select
split
- DataStream → SplitStream
- 按照指定标准将指定的DataStream拆分成多个流用SplitStream来表示
select
- SplitStream → DataStream
- 跟split搭配使用,从SplitStream中选择一个或多个流
def testSplit(): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)
val streamFromFile = env.readTextFile("senor.txt")
val dataStream: DataStream[SensorReading] = streamFromFile.map(data => {
val dataArray = data.split(",")
SensorReading(dataArray(0).trim, dataArray(1).toLong, dataArray(2).trim.toDouble)
})
// 多流转换算子
val splitStream = dataStream.split(data => {
if (data.temperature > 20) Seq("high") else Seq("low")
})
val high = splitStream.select("high")
val low = splitStream.select("low")
val all = splitStream.select("high", "low")
high.print("high")
low.print("low")
all.print("all")
env.execute()
}
connect、coMap、coFlatMap
connect
- DataStream,DataStream -> ConnectedStreams
coMap
- ConnectedStreams -> DataStream
def testConnect(): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)
val streamFromFile = env.readTextFile("senor.txt")
val dataStream: DataStream[SensorReading] = streamFromFile.map(data => {
val dataArray = data.split(",")
SensorReading(dataArray(0).trim, dataArray(1).toLong, dataArray(2).trim.toDouble)
})
// 多流转换算子
val splitStream = dataStream.split(data => {
if (data.temperature > 20) Seq("high") else Seq("low")
})
val high = splitStream.select("high")
val low = splitStream.select("low")
// 创建一个新的数据流,数据类型与high、low不同
val warning = high.map(data => (data.id, data.temperature))
// 得到ConnectedStreams[T, T2]
val connectedStreams = warning.connect(low)
val coMapDataStreams = connectedStreams.map(data1 => (data1._1, data1._2, "warning"), data2 => (data2.temperature, "health"))
coMapDataStreams.print()
env.execute()
}
UDF函数
Filter
def testFilter(): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)
val streamFromFile = env.readTextFile("senor.txt")
val dataStream: DataStream[SensorReading] = streamFromFile.map(data => {
val dataArray = data.split(",")
SensorReading(dataArray(0).trim, dataArray(1).toLong, dataArray(2).trim.toDouble)
})
dataStream.filter(new MyFilter()).print()
env.execute()
}
class MyFilter() extends FilterFunction[SensorReading] {
override def filter(value: SensorReading): Boolean = {
return value.id.startsWith("senor_1")
}
}
Sink
def testFlinkSink2Kafka(): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)
val streamFromFile = env.readTextFile("senor.txt")
// Transform操作
val dataStream = streamFromFile.map(data => {
val dataArray = data.split(",")
SensorReading(dataArray(0).trim, dataArray(1).toLong, dataArray(2).trim.toDouble).toString
})
// sink
dataStream.addSink(new FlinkKafkaProducer010[String]("localhost:9092", "sinkTest", new SimpleStringSchema()))
env.execute()
}
参考文档
Basic API Concepts
Flink算子使用方法及实例演示:union和connect
Flink(五) —— DataStream API的更多相关文章
- Apache Flink -Streaming(DataStream API)
综述: 在Flink中DataStream程序是在数据流上实现了转换的常规程序. 1.示范程序 import org.apache.flink.api.common.functions.FlatMap ...
- Flink Program Guide (3) -- Event Time (DataStream API编程指导 -- For Java)
Event Time 本文翻译自DataStream API Docs v1.2的Event Time ------------------------------------------------ ...
- Flink-v1.12官方网站翻译-P002-Fraud Detection with the DataStream API
使用DataStream API进行欺诈检测 Apache Flink提供了一个DataStream API,用于构建强大的.有状态的流式应用.它提供了对状态和时间的精细控制,这使得高级事件驱动系统的 ...
- Flink Program Guide (10) -- Savepoints (DataStream API编程指导 -- For Java)
Savepoint 本文翻译自文档Streaming Guide / Savepoints ------------------------------------------------------ ...
- Flink Program Guide (2) -- 综述 (DataStream API编程指导 -- For Java)
v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...
- Flink DataStream API Programming Guide
Example Program The following program is a complete, working example of streaming window word count ...
- Flink Program Guide (8) -- Working with State :Fault Tolerance(DataStream API编程指导 -- For Java)
Working with State 本文翻译自Streaming Guide/ Fault Tolerance / Working with State ---------------------- ...
- flink DataStream API使用及原理
传统的大数据处理方式一般是批处理式的,也就是说,今天所收集的数据,我们明天再把今天收集到的数据算出来,以供大家使用,但是在很多情况下,数据的时效性对于业务的成败是非常关键的. Spark 和 Flin ...
- Flink DataStream API 中的多面手——Process Function详解
之前熟悉的流处理API中的转换算子是无法访问事件的时间戳信息和水位线信息的.例如:MapFunction 这样的map转换算子就无法访问时间戳或者当前事件的时间. 然而,在一些场景下,又需要访问这些信 ...
- [源码分析] 带你梳理 Flink SQL / Table API内部执行流程
[源码分析] 带你梳理 Flink SQL / Table API内部执行流程 目录 [源码分析] 带你梳理 Flink SQL / Table API内部执行流程 0x00 摘要 0x01 Apac ...
随机推荐
- 刷题之Implement strStr()、Climbing Stairs
public class Solution { public int strStr(String haystack, String needle) { int big = haystack.lengt ...
- hash表系列(转)
http://www.cnblogs.com/mumuxinfei/p/4441826.html 前言: 我以前在百度的mentor, 在面试时特喜欢考察哈希表. 那时的我满是疑惑和不解, 觉得这东西 ...
- 一、VIP课程:互联网工程专题 01-Git基本概念与核心命令掌握
第一课:Git基本概念与核心命令掌握.docx 课程概要: GIT 体系概述 GIT 核心命令使用 GIT 底层原理 一.GIT体系概述 1.使用方式区别 从本地把文件推送远程服务,SVN只需要com ...
- 启动mysql遇到问题Can't connect to local MySQL server through socket '/tmp/mysql.sock' (2)
在mysql的启动过程中有时会遇到下述错误 Can't connect to local MySQL server through socket '/tmp/mysql.sock' (2) 请问mys ...
- group_concat用法以及字符串太长显示不全
由于group_concat默认的长度是1024,所以要将最大长度修改 首先执行 SET SESSION group_concat_max_len = 10240;#一次查询有效 然后再进行拼接 se ...
- 利用mysecureshell搭建sftp服务
1.下载对应的mysecureshell-1.33-1.x86_64.rpm包 2.安装mysecureshell-1.33-1.x86_64.rpm 3.添加ftp用户 useradd ftp 4. ...
- 开源PLM软件Aras详解七 在Aras的Method中如何引用外部DLL
在实际的项目中,Aras内部的方法可能并不能完全满足我们,比如Office的组件,就必须引入,那么在Aras内部的Method中,我们如何引入外部Dll文件 首先,我们新建一个Dll文件,简单的Dem ...
- HDU 2795 Billboard 线段树活用
题目大意:在h*w 高乘宽这样大小的 board上要贴广告,每个广告的高均为1,wi值就是数据另给,每组数组给了一个board和多个广告,要你求出,每个广告应该贴在board的哪一行,如果实在贴不上, ...
- 201712-1 最小差值 Java
思路: 也可以不排序,最后用abs就行 import java.util.Arrays; import java.util.Scanner; public class Main { public st ...
- H3C S10512虚拟化配置
软件版本:Version 7.1.070, Release 7585P05 1.配置SW1#设置SW1的成员编号为1,创建IRF端口2,并将它与物理接口Ten-G0/0/45.Ten-G0/0/46. ...