E - Cell Phone Network

POJ - 3659

题目大意:

给你一棵树,放置灯塔,每一个节点可以覆盖的范围是这个节点的所有子节点和他的父亲节点,问要使得所有的节点被覆盖的最少灯塔数量。

考虑每一个节点要被覆盖应该如何放置灯塔。

如果一个节点被覆盖 1 该节点放了灯塔  2 该点的父亲节点放了灯塔  3 该点的儿子节点放了灯塔。

dp[u][0] 表示这个节点的儿子节点放了灯塔

dp[u][1] 表示这个点本身放了灯塔

dp[u][2] 表示这个点的父亲节点放了灯塔

转移方程,

dp[u][1] 可以从儿子的三个状态转移 dp[u][1]=min(dp[v][0],dp[v][1],dp[v][2])

dp[u][2] 那么如果要儿子节点被覆盖,要么儿子本身有灯塔,要么儿子的儿子有灯塔 dp[u][2]=min(dp[v][0],dp[v][1])

dp[u][0] 这个是这个节点的儿子节点放了灯塔,但是如果这个节点有很多个儿子,我们只要其中一个即可

所以这个转移比较复杂,可以像之前的 E. Paint the Tree 树形dp 这个一样的去处理。

不过这个对于子节点选dp[v][1]的限制是只要一个即可,所以可以用一个更简单的方法。

设置一个变量dif,dif=min(dp[v][1]-dp[v][0],dif)

最后在加上这个dif即可,其实两个本质上是一样的。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <stack>
#include <bitset>
#include <vector>
#include <map>
#include <string>
#include <cstring>
#include <bitset>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=3e5+;
typedef long long ll;
vector<int>G[maxn];
void add(int u,int v){
G[u].push_back(v);
G[v].push_back(u);
}
int n;
void read(){
scanf("%d",&n);
for(int i=;i<n;i++){
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
}
}
int dp[maxn][];
void dfs(int u,int pre){
dp[u][]=;
dp[u][]=;
dp[u][]=;
for(int i=;i<G[u].size();i++){
int v=G[u][i];
if(v==pre) continue;
dfs(v,u);
dp[u][]+=min(dp[v][],min(dp[v][],dp[v][]));
dp[u][]+=min(dp[v][],dp[v][]);
dp[u][]+=dp[v][];
}
vector<int>val;val.clear();
for(int i=;i<G[u].size();i++){
int v=G[u][i];
if(v==pre) continue;
val.push_back(dp[v][]-dp[v][]);
}
if(val.size()==) dp[u][]=inf;
sort(val.begin(),val.end());
if(val.size()&&val[]>) dp[u][]+=val[];
else {
for(int i=;i<val.size();i++){
if(val[i]>) break;
dp[u][]+=val[i];
}
}
// printf("dp[%d][0]=%d dp[%d][1]=%d dp[%d][2]=%d\n",u,dp[u][0],u,dp[u][1],u,dp[u][2]);
} int main(){
read();
dfs(,-);
printf("%d\n",min(dp[][],dp[][]));
return ;
}

E. Tree with Small Distances

题目差不多。

题目大意:

给你一棵树,要求这棵树的根节点1 到 每一个点的距离要小于等于2 增加的最少的路数。

仔细比划比划 就发现和上面是一样的题目。

只是要标记一下本来就和根节点1 距离小于等于2的所有节点,这些节点的转移有一点不一样,其他都是一样的。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <stack>
#include <bitset>
#include <vector>
#include <map>
#include <string>
#include <cstring>
#include <bitset>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=2e5+;
typedef long long ll;
vector<int>G[maxn];
int vis[maxn];
void add(int u,int v){
G[u].push_back(v);
G[v].push_back(u);
}
int n;
void read(){
scanf("%d",&n);
for(int i=;i<n;i++){
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
}
}
int dp[maxn][];
void dfs(int u,int pre){
dp[u][]=;
dp[u][]=;
dp[u][]=;
int dif=inf;
for(int i=;i<G[u].size();i++){
int v=G[u][i];
if(v==pre) continue;
dfs(v,u);
if(vis[u]){
dp[u][]+=min(dp[v][],dp[v][]);
dp[u][]+=min(dp[v][],min(dp[v][],dp[v][]));
dp[u][]+=min(dp[v][],dp[v][]);
}
else{
dp[u][]+=min(dp[v][],min(dp[v][],dp[v][]));
dp[u][]+=min(dp[v][],dp[v][]);
dp[u][]+=min(dp[v][],dp[v][]);
dif=min(dp[v][]-min(dp[v][],dp[v][]),dif);
}
}
if(vis[u]) return ;
dp[u][]+=dif;
} void init(int u,int pre){
vis[u]=;
for(int i=;i<G[u].size();i++){
int v=G[u][i];
vis[v]=;
for(int j=;j<G[v].size();j++){
int x=G[v][j];
vis[x]=;
}
}
} int main(){
read();
init(,-);
dfs(,-);
printf("%d\n",min(dp[][],dp[][]));
return ;
}  

树的最小支配集 E - Cell Phone Network POJ - 3659 E. Tree with Small Distances的更多相关文章

  1. POJ 3659 Cell Phone Network(树的最小支配集)(贪心)

    Cell Phone Network Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6781   Accepted: 242 ...

  2. 树形dp compare E - Cell Phone Network POJ - 3659 B - Strategic game POJ - 1463

    B - Strategic game POJ - 1463   题目大意:给你一棵树,让你放最少的东西来覆盖所有的边   这个题目之前写过,就是一个简单的树形dp的板题,因为这个每一个节点都需要挺好处 ...

  3. 树形DP求树的最小支配集,最小点覆盖,最大独立集

    一:最小支配集 考虑最小支配集,每个点有两种状态,即属于支配集合或者不属于支配集合,其中不属于支配集合时此点还需要被覆盖,被覆盖也有两种状态,即被子节点覆盖或者被父节点覆盖.总结起来就是三种状态,现对 ...

  4. 树形DP 树的最小支配集,最小点覆盖与最大独立集

    最小支配集: 从V中选取尽量少的点组成一个集合,让V中剩余的点都与取出来的点有边相连. (点) 最小点覆盖: 从V中选取尽量少的点组成一个集合V1,让所有边(u,v)中要么u属于V1,要么v属于V1 ...

  5. POJ 3398 Perfect Service(树型动态规划,最小支配集)

    POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...

  6. 树的问题小结(最小生成树、次小生成树、最小树形图、LCA、最小支配集、最小点覆盖、最大独立集)

    树的定义:连通无回路的无向图是一棵树. 有关树的问题: 1.最小生成树. 2.次小生成树. 3.有向图的最小树形图. 4.LCA(树上两点的最近公共祖先). 5.树的最小支配集.最小点覆盖.最大独立集 ...

  7. 求树的最大独立集,最小点覆盖,最小支配集 贪心and树形dp

    目录 求树的最大独立集,最小点覆盖,最小支配集 三个定义 贪心解法 树形DP解法 (有任何问题欢迎留言或私聊&&欢迎交流讨论哦 求树的最大独立集,最小点覆盖,最小支配集 三个定义 最大 ...

  8. POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法

    POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...

  9. POJ3659 Cell Phone Network(树上最小支配集:树型DP)

    题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...

随机推荐

  1. P1352 没有上司的舞会&&树形DP入门

    https://www.luogu.com.cn/problem/P1352 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的 ...

  2. Linux-设备

    一.在Linux系统中,每个设备都被当成一个文件来对待. 在Linux系统中,几乎所有的硬件设备都在/dev这个目录内.

  3. 原创hadoop2.6集群环境搭建

    三台机器: Hmaster 172.168.2.3.Hslave1 172.168.2.4.Hslave2 172.168.2.6 JDK:1.8.49 OS:red hat 5.4 64 (由于后期 ...

  4. 百度api实现人脸对比

    第一步(注册账号): 点这里注册百度云账号 如图: 创建应用得到 APP_ID API_KEY SECRET_KEY   第二步(代码): import requests import base64 ...

  5. Cucumber(2)——目录结构以及基本语法

    目录 回顾 HelloWorld 扩展 回顾 在上一节中,我大致的介绍了一下cucumber的特点,以及基于ruby和JavaScript下关于cucumber环境的配置,如果你还没有进行相关的了解或 ...

  6. Matlab学习-(3)

    1. 二维图 绘制完图形以后,可能还需要对图形进行一些辅助操作,以使图形意义更加明确,可读性更强. 1.1 图形标注 title(’图形名称’) (都放在单引号内)xlabel(’x轴说明’)ylab ...

  7. ajax ★ ★ ★ ★ ★

    ajax 1   定义:  是创建交互式应用的网页交互技术 2    特点:无刷新.异步 3  中介数据类型: 1)  XML - 可扩展的标记语言                          ...

  8. 通达OA任意用户登录 漏洞复现

    0x00 漏洞简介 通达OA国内常用的办公系统,使用群体,大小公司都可以,其此次安全更新修复的高危漏洞为任意用户登录漏洞.攻击者在远程且未经授权的情况下,通过利用此漏洞,可以直接以任意用户身份登录到系 ...

  9. 【认证与授权】2、基于session的认证方式

    这一篇将通过一个简单的web项目实现基于Session的认证授权方式,也是以往传统项目的做法. 先来复习一下流程 用户认证通过以后,在服务端生成用户相关的数据保存在当前会话(Session)中,发给客 ...

  10. 二、Go语言开发环境安装与编写第一个Hello World

    本系列文章均为学习过程中记录的笔记,欢迎和我一起来学习Go语言. 全文使用环境如下: Go语言版本:1.13 操作系统:deepin 使用工具:Goland开发工具 Go语言追溯历史 Go语言2009 ...