Description

windy有\(N\)条木板需要被粉刷。每条木板被分为\(M\)个格子。 每个格子要被刷成红色或蓝色。 windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。 如果windy只能粉刷\(T\)次,他最多能正确粉刷多少格子? 一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

Input

第一行包含三个整数\(N,M,T\)。 接下来有\(N\)行,每行一个长度为\(M\)的字符串,\(0\)表示红色,\(1\)表示蓝色。

Output

包含一个整数,最多能正确粉刷的格子数。

Sample Input

3 6 3

111111

000000

001100

Sample Output

16

HINT

\(30\%\)的数据,满足\(1 \le N,M \le 10\);$0 \le T \le 100 $。

\(100\%\)的数据,满足\(1 \le N,M \le 50\);\(0 \le T \le 2500\) 。

一个很明显的dp,\(f_{i,j}\)表示该木板前\(i\)格涂\(j\)次得到的最多格子数;\(g_{i,j}\)表示前\(i\)块木板涂\(j\)次得到的最多格子数。

转移如下(\(pre_{i}\)表示该木板前\(i\)格\(1\)的数目):

\(f_{i,j} = max(f_{i,j},f_{k,j-1}+max(pre_{i}-pre_{k},i-k-(pre_{i}-pre_{k})))\);

\(g_{p,i} = max(g_{p,i},g_{p-1,j}+f_{m,i-j})\)。

代码如下:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
using namespace std; #define inf (1<<29)
#define maxn (60)
#define maxt (2510)
int n,m,t,pre[maxn],f[maxn][maxt],g[maxn][maxt]; inline void dp(int p)
{
memset(f,0,sizeof(f));
for (int i = 1;i <= m;++i)
for (int j = 1;j <= t;++j)
{
f[i][j] = f[i-1][j];
for (int k = 0;k < i;++k)
f[i][j] = max(f[i][j],f[k][j-1]+max(pre[i]-pre[k],i-k-(pre[i]-pre[k])));
}
for (int i = 1;i <= t;++i)
for (int j = 0;j <= i;++j)
g[p][i] = max(g[p][i],g[p-1][j]+f[m][i-j]);
} int main()
{
freopen("1296.in","r",stdin);
freopen("1296.out","w",stdout);
scanf("%d %d %d",&n,&m,&t);
for (int p = 1;p <= n;++p)
{
for (int i = 1;i <= m;++i) scanf("%1d",pre+i),pre[i] += pre[i-1];
dp(p);
}
printf("%d",g[n][t]);
return 0;
}

BZOJ 1296 粉刷匠的更多相关文章

  1. Codevs 1744 格子染色==BZOJ 1296 粉刷匠

    1744 格子染色  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Description 有 n 条木板需要被粉 ...

  2. BZOJ 1296 粉刷匠(分组背包套DP)

    刚开始往网络流的方向想.建不出图... 因为每次只能对一行进行染色.每一行都是独立的. 对于每一行,因为格子只能染一次,所以可以发现这是一个多阶段决策问题,这个决策就是当前格子染0还是染1. 令dp[ ...

  3. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

  4. BZOJ 1296: [SCOI2009]粉刷匠( dp )

    dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...

  5. BZOJ 1296(SCOI 2009) 粉刷匠

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2544 Solved: 1466 [Submit][Statu ...

  6. 1296: [SCOI2009]粉刷匠[多重dp]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1919  Solved: 1099[Submit][Statu ...

  7. 2014.7.8模拟赛【笨笨当粉刷匠】|bzoj1296 [SCOI]粉刷匠

    笨笨太好玩了,农田荒芜了,彩奖用光了,笨笨只好到处找工作,笨笨找到了一份粉刷匠的工作.笨笨有n条木板需要被粉刷.每条木板被分成m个格子,每个格子要被刷成红色或蓝色.笨笨每次粉刷,只能选择一条木板上一段 ...

  8. 【BZOJ1296】[SCOI2009]粉刷匠(动态规划)

    [BZOJ1296][SCOI2009]粉刷匠(动态规划) 题面 BZOJ 洛谷 题解 一眼题吧. 对于每个串做一次\(dp\),求出这个串刷若干次次能够达到的最大值,然后背包合并所有的结果即可. # ...

  9. bzoj1296【SCOI2009】粉刷匠

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 1479  Solved: 837 [id=1296" ...

随机推荐

  1. UML 的基本组成

    UML 是由UML构造块.规则.通用机制三部分组成的.而UML构造块由建模元素(事物).关系和图组成. 建模元素 建模元素是对模型中最具有代表性的成分的抽象.一般情况下,将建模元素分为结构元素.行为元 ...

  2. android:ImageView 和ImageButton的区别

    1.继承不同: java.lang.Object ↳ android.view.View ↳android.widget.ImageView ↳ android.widget.ImageButton ...

  3. android 56

    ##其他布局 * LinearLayout * RelativeLayout * FrameLayout * AbsoluteLayout (绝对布局, 文档说过时,应用场景机顶盒开发,定制的平板) ...

  4. DEPENDENT SUBQUERY” 和 “SUBQUERY”

    http://blog.163.com/li_hx/blog/static/183991413201642410122327/ mysql> CREATE TABLE t1 (a INT, b ...

  5. 从高德 SDK 学习 Android 动态加载资源

    前不久跑去折腾高德 SDK 中的 HUD 功能,相信用过该功能的用户都知道 HUD 界面上的导航转向图标是动态变化的.从高德官方导航 API 文档中 AMapNaviGuide 类的描述可知,导航转向 ...

  6. unity介绍

  7. Codeforces 231E - Cactus

    231E - Cactus 给一个10^5个点的无向图,每个点最多属于一个环,规定两点之间的简单路:从起点到终点,经过的边不重复 给10^5个询问,每个询问两个点,问这两个点之间有多少条简单路. 挺综 ...

  8. Oracle高版本导出dmp导入Oracle低版本报错:"不是有效的导出文件、头部验证失败"解决方法

    从Oracle高版本中导出dmp,然后导入到Oracle低版本时会报错:"不是有效的导出文件.头部验证失败",解决方法: 方法一:下载软件:AlxcTools,打开后选择要修改的文 ...

  9. Java-分页实例

    1.PageModel.java package com.javaweb; import java.util.List; public class PageModel<E> { priva ...

  10. Http,Https (SSL)的Url绝对路径,相对路径解决方案Security Switch 4.2 英文帮助文档 分类: ASP.NET 2014-10-28 10:50 147人阅读 评论(1) 收藏

    Security Switch 4.2 =================== Security Switch enables various ASP.NET applications to auto ...