布隆过滤器(Bloom Filter)
一、布隆过滤器介绍
Bloom Filter是一种空间效率很高的随机数据结构,Bloom Filter可以看做是对bit-map的扩展,它的原理如下:
当一个元素被加入集合时,通过K个Hash函数将这个元素映射成一个位阵列(Bit Array)中的K个点,把它们置为1,检索时我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了。
1、如果这些点有任何一个0,那么被检索元素一定不存在;
2、如果都是1,那么被检索元素可能存在;
存在这种场景:有A,B二个数,A存在,但B不存在。假如利用Bloom Filter将它们映射成K个点,但刚好AB的K个点重合。那么在检索B数据时,刚好可以看到B对应的所有标识位上全为1,但实际上B却不存。
我们以下面的例子来说明布隆过滤器: 假定我们存储一亿个电子邮件地址,我们先建立一个十六亿二进制(比特),即两亿字节的向量,然后将这十六亿个二进制全部设置为零。对于每一个电子邮件地址 X,我们用八个不同的随机数产生器(F1,F2, ...,F8) 产生八个信息指纹(f1, f2, ..., f8)。再用一个随机数产生器 G 把这八个信息指纹映射到 1 到十六亿中的八个自然数 g1, g2, ...,g8。现在我们把这八个位置的二进制全部设置为一。当我们对这一亿个 email 地址都进行这样的处理后。一个针对这些 email 地址的布隆过滤器就建成了。(见下图)

现在,让我们看看如何用布隆过滤器来检测一个可疑的电子邮件地址 Y 是否在黑名单中。我们用相同的八个随机数产生器(F1, F2, ..., F8)对这个地址产生八个信息指纹 s1,s2,...,s8,然后将这八个指纹对应到布隆过滤器的八个二进制位,分别是 t1,t2,...,t8。如果 Y 在黑名单中,显然,t1,t2,..,t8 对应的八个二进制一定是一。这样在遇到任何在黑名单中的电子邮件地址,我们都能准确地发现。
布隆过滤器决不会漏掉任何一个在黑名单中的可疑地址。但是,它有一条不足之处。也就是它有极小的可能将一个不在黑名单中的电子邮件地址判定为在黑名单中,因为有可能某个好的邮件地址正巧对应个八个都 被设置成一的二进制位。好在这种可能性很小。我们把它称为误识概率。在上面的例子中,误识概率在万分之一以下。
布隆过滤器的好处在于快速,省空间。但是有一定的误识别率。常见的补救办法是在建立一个小的白名单,存储那些可能别误判的邮件地址。
二、使用场景
主要使用场景:用来检测某个元素是否是巨量数据集合中的成员,但识别结果存在误差;
识别场景:某个元素实际不存在,但是由于前面元素在进行多个Hash时,刚好对应位为1,那么会误认为其存在,但实际不存在。
如果某个成员确实属于集合,那么Bloom Filter一定能够给出正确的判断。
三、应用举例
A、B两个文件,各存放50亿条URL,每条URL占用64个字节,内存限制是4G,让你找出A、B文件共同的URL。如果是三个甚至N个文件呢?
分析:如果允许有一定的错误率,可以使用Bloom Filter,4G内存大概可以表示为340亿bit。将其中一个文件中的URL使用Bloom Filter映射为这340亿bit,然后挨个读取另外一个文件的URL,检查是否与Bloom Filter中相同,如果是,那么该URL应当是共同的URL(注意:这种方式存在一定的错误率)
布隆过滤器(Bloom Filter)的更多相关文章
- [转载]布隆过滤器(Bloom Filter)
[转载]布隆过滤器(Bloom Filter) 这部分学习资料来源:https://www.youtube.com/watch?v=v7AzUcZ4XA4 Filter判断不在,那就是肯定不在:Fil ...
- 布隆过滤器(Bloom Filter)详解——基于多hash的概率查找思想
转自:http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html 布隆过滤器[1](Bloom Filter)是由布隆(Burton ...
- 布隆过滤器(Bloom Filter)的原理和实现
什么情况下需要布隆过滤器? 先来看几个比较常见的例子 字处理软件中,需要检查一个英语单词是否拼写正确 在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上 在网络爬虫里,一个网址是否被访问过 yahoo, ...
- [转载] 布隆过滤器(Bloom Filter)详解
转载自http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html 布隆过滤器[1](Bloom Filter)是由布隆(Burton ...
- 布隆过滤器(Bloom Filter)详解
直观的说,bloom算法类似一个hash set,用来判断某个元素(key)是否在某个集合中.和一般的hash set不同的是,这个算法无需存储key的值,对于每个key,只需要k个比特位,每个存储一 ...
- 浅谈布隆过滤器Bloom Filter
先从一道面试题开始: 给A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL. 这个问题的本质在于判断一个元素是否在一个集合中.哈希表以O(1) ...
- 【面试突击】-缓存击穿(布隆过滤器 Bloom Filter)
原文地址:https://blog.csdn.net/fouy_yun/article/details/81075432 前面的文章介绍了缓存的分类和使用的场景.通常情况下,缓存是加速系统响应的一种途 ...
- 布隆过滤器 Bloom Filter 2
date: 2020-04-01 17:00:00 updated: 2020-04-01 17:00:00 Bloom Filter 布隆过滤器 之前的一版笔记 点此跳转 1. 什么是布隆过滤器 本 ...
- 布隆过滤器(Bloom Filter)-学习笔记-Java版代码(挖坑ing)
布隆过滤器解决"面试题: 如何建立一个十亿级别的哈希表,限制内存空间" "如何快速查询一个10亿大小的集合中的元素是否存在" 如题 布隆过滤器确实很神奇, 简单 ...
- 探索C#之布隆过滤器(Bloom filter)
阅读目录: 背景介绍 算法原理 误判率 BF改进 总结 背景介绍 Bloom filter(后面简称BF)是Bloom在1970年提出的二进制向量数据结构.通俗来说就是在大数据集合下高效判断某个成员是 ...
随机推荐
- 深刻理解C#的传值调用和传引用调用
传值调用和传引用调用是几乎所有主流语言都会涉及到的问题,下面我谈谈我对C#中传值调用和传引用调用的理解. 1. 一般对C#中传值调用和传引用调用的理解 如果传递的参数是基元类型(int,float等) ...
- .NET(C#)调用webService获取客户端IP地址所属区域(非异步)
功能描述: 此接口用于获取客户端访问的IP的地址所属的区域(国家,城市等).通过输入IP地址查询国家.城市.所有者等信息.没有注明国家的为中国输入参数:IP地址(自动替换 " ." ...
- java类转化为json对象
方式一:使用jar包,直接转化成json格式,再使用outwrite写到jsp中 先说说要使用到的包commons-beanutils.jar.commons-collections.jar.comm ...
- MySQL优化技巧之五(mysql查询性能优化)
对于高性能数据库操作,只靠设计最优的库表结构.建立最好的索引是不够的,还需要合理的设计查询.如果查询写得很糟糕,即使库表结构再合理.索引再合适,也无法实现高性能.查询优化.索引优化.库表结构优化需要齐 ...
- Get ListView items from other windows z
This is more difficult than one might think. In order to get the information you're looking for, you ...
- 【原】Spark中Job如何划分为Stage
版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Job的提交 http://www.cnblogs.com/yourarebest/p/5342404.html 1.Spark中 ...
- 关于Windows Azure的常见问题-注册问题FAQ
注册问题 手机验证出现问题怎么办? 当您输入发送到手机里的验证码到文本框时,您需要点击右侧的“验证代码”的按钮,待按钮转变为“绿色对勾”的标识后,您可以点击“继续”来完成余下的注册步骤.每一个手 机号 ...
- 【Java基础】Java类及成员和修饰符的关系
修饰符的分类 权限修饰符:private,默认的,protected,public 状态修饰符:static,final 抽象修饰符:abstract 类的修饰符 权限修饰符:默认修饰符,public ...
- HW2.2
import java.util.Scanner; public class Solution { public static void main(String[] args) { Scanner i ...
- Codeforces245H - Queries for Number of Palindromes(区间DP)
题目大意 给定一个字符串s,q个查询,每次查询返回s[l-r]含有的回文子串个数(题目地址) 题解 和有一次多校的题目长得好相似,这个是回文子串个数,多校的是回文子序列个数 用dp[i][j]表示,s ...