Trie&可持久化Trie
WARNING:以下代码未经测试,若发现错误,欢迎指出qwq~
Trie树(字典树)
一种简单的数据结构,可存储大量字符串,可在$O(len)$的时间内完成插入,删除,查找等操作。
下面是一个简单的例子,对于abc,abd,abcd,bcd这四个字符串建Trie树,如下图:
其中,红色节点为一个字符串的结尾。对于任意节点,从根节点到该节点路径上字符组成的字符串即为该节点表示的字符串。
基本操作
相关变量
int root,cnt,ch[][],son[];
bool flag[];
void init(){
memset(flag,false,sizeof(flag));
memset(son,,sizeof(son));
memset(ch,,sizeof(ch));
root=cnt=;
return;
}
root即为根节点,cnt用于动态建树,ch[i][j]表示i节点的第j个子节点(表示字符char('a'+i))的编号,son[i]表示i节点的子节点数,flag[i]表示i节点是否为某个字符串的末尾。
插入
void ins(int rt,int dep){
if(dep==len){
flag[rt]=true;
return;
}
if(!ch[rt][s[dep]-'a']){
ch[rt][s[dep]-'a']=++cnt;
son[rt]++;
}
ins(ch[rt][s[dep]-'a'],dep+);
return;
}
删除
bool del(int rt,int dep){
if(dep==len){
if(flag[rt]){
flag[rt]=false;
return true;
}
return false;
}
if(!ch[rt][s[dep]-'a'])
return false;
if(del(ch[rt][s[dep]-'a'],dep+)){
if(!son[ch[rt][s[dep]-'a']]&&!flag[ch[rt][s[dep]-'a']]){
ch[rt][s[dep]-'a']=;
son[rt]--;
}
return true;
}
return false;
}
查找
bool query(int rt,int dep){
if(dep==len)
return flag[rt];
if(!ch[rt][s[dep]-'a'])
return false;
return query(ch[rt][s[dep]-'a'],dep+);
}
以上三个是Trie树的基本操作,下面来讲一下Trie树的其它运用。
拓展运用
求第k小字符串
存储以每个节点为根的子树中的末尾节点个数(size[i])即可。
void kth(int rt,int dep,int k){
if(k>size[rt]){
puts("have no kth string");
return;
}
for(int i=;i<;i++)
if(k>size[ch[rt][i]])
k-=size[ch[rt][i]];
else if(ch[rt][i]){
putchar('a'+i);
kth(ch[rt][i],dep+,k);
}
return;
}
最长公共前缀
用LCA求两个字符串对应的末尾节点的最近公共祖先即可,时间复杂度O(log2n)。
代码不贴了,懒~~~
最大异或值
将每个数转化为二进制,添加前缀0至相同位数,然后从最高位开始插入。查询时从最高位开始查询是否有与相应位置异或值为1的节点即可。
太水了,也不贴代码了~~~
可持久化Trie树
在做题过程中,我们常常会遇到求区间第k大字符串,区间与某数异或最大值之内的问题,我们便可以采用可持久化Trie树来解决这类问题。
依旧以abc,abd,abcd,bcd这四个字符串为例建可持久化Trie,如下图:

红色节点意义同上。
基本操作
相关变量
int cnt=,root[],size[],ch[][];
bool flag[];
void init(){
memset(flag,false,sizeof(flag));
memset(root,,sizeof(root));
memset(size,,sizeof(size));
memset(ch,,sizeof(ch));
cnt=;
return;
}
意义同上。
插入
void ins(int &now,int last,int dep){
if(!now)
now=++cnt;
if(dep==len){
flag[now]=true;
size[now]=size[last]+;
return;
}
int sign=s[dep]-'a';
for(int i=;i<;i++)
if(i!=sign){
ch[now][i]=ch[last][i];
size[now]+=size[ch[last][i]];
}
ins(ch[now][sign],ch[last][sign],dep+);
size[now]+=size[ch[now][sign]];
return;
}
区间第k小查询
void kth(int rl,int rr,int dep,int k){
if(k>size[rr]-size[rl]){
puts("have no kth string");
return;
}
for(int i=;i<;i++)
if(k>size[ch[rr][i]]-size[ch[rl][i]])
k-=size[ch[rr][i]]-size[ch[rl][i]];
else if(size[ch[rr][i]]-size[ch[rl][i]]>){
putchar('a'+i);
kth(ch[rl][i],ch[rr][i],dep+,k);
return;
}
return;
}
区间最大异或值
好吧,还是懒得打~~~
Trie&可持久化Trie的更多相关文章
- BZOJ.4212.神牛的养成计划(Trie 可持久化Trie)
BZOJ 为啥hzw的题也是权限题啊 考虑能够匹配\(s1\)这一前缀的串有哪些性质.对所有串排序,能发现可以匹配\(s1\)的是一段区间,可以建一棵\(Trie\)求出来,设为\([l,r]\). ...
- Luogu5283 十二省联考2019异或粽子(trie/可持久化trie+堆)
做前缀异或和,用堆维护一个五元组(x,l,r,p,v),x为区间右端点的值,l~r为区间左端点的范围,p为x在l~r中最大异或和的位置,v为该最大异或和,每次从堆中取出v最大的元素,以p为界将其切成两 ...
- 【BZOJ4137】火星商店问题(线段树分治,可持久化Trie)
[BZOJ4137]火星商店问题(线段树分治,可持久化Trie) 题面 洛谷 BZOJ权限题 题解 显然可以树套树,外层线段树,内层可持久化Trie来做. 所以我们需要更加优美的做法.--线段树分治. ...
- 可持久化Trie模板
如果你了解过 01 Trie 和 可持久化线段树(例如 : 主席树 ).那么就比较好去可持久化 Trie 可持久化 Trie 当 01 Trie 用的时候能很方便解决一些原本 01 Trie 不能解决 ...
- HDU 4757 Tree(可持久化Trie+Tarjan离线LCA)
Tree Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others) Total Su ...
- 【BZOJ4260】 Codechef REBXOR 可持久化Trie
看到异或就去想前缀和(⊙o⊙) 这个就是正反做一遍最大异或和更新答案 最大异或就是很经典的可持久化Trie,从高到低贪心 WA: val&(1<<(base-1))得到的并不直接是 ...
- 可持久化Trie & 可持久化平衡树 专题练习
[xsy1629]可持久化序列 - 可持久化平衡树 http://www.cnblogs.com/Sdchr/p/6258827.html [bzoj4260]REBXOR - Trie 事实上只是一 ...
- HDU 4757 Tree(可持久化trie)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4757 题意:给出一棵树,节点有权值.每次询问x到y的路径上与z抑或的最大值. 思路:可持久化trie. ...
- 可持久化trie 学习总结
QAQ 以前一直觉得可持久化trie很难,今天强行写了一发觉得还是蛮简单的嘛 自己的模板是自己手写的,写了几道题目并没有出过错误 THUSC的第二题的解法五貌似就是可持久化trie,时间复杂度O(60 ...
随机推荐
- 基于Linux的智能家居的设计(2)
1 系统整体设计方案 智能家居系统的是一个实时查询家庭的温湿度.照明控制.自己主动控制的设定.集家庭娱乐.智能安防为一体,大量数据快处理.可靠的系统,因此在硬件和软件上都有非常大的要求,因此在这里进 ...
- iOS 开发百问(5)
42. 警告:Multiplebuild commands for output file target引用了名字反复的资源 找到当前的target,展开之后.找到CopyBundle Resourc ...
- 分布式文件存储FastDFS(一)初识FastDFS
一.FastDFS简单介绍 FastDFS是一款开源的.分布式文件系统(Distributed File System),由淘宝开发平台部资深架构师余庆开发.作为一个分布式文件系统,它对文件进行管理. ...
- Design Pattern Adaptor 适配器设计模式
适配器设计模式是为了要使用一个旧的接口,或许这个接口非常难用,或许是和新的更新的接口不兼容,所以须要设计一个适配器类,然后就能够让新旧的接口都统一. 就是这种一个图: watermark/2/text ...
- Azure 配置高可用的准备系列工作-建立不同区域的存储账户和建立网络!
我们谈到我们的业务,常常谈到一个词.三层架构,就是我们的UI层.数据訪问层和数据存储层的分离,通常情况下我们的业务高可用必须满足这三层的所有高可用的情况下才干达到最高级别的高可用. 那么谈到Az ...
- JsonRequestBehavior.AllowGet 方便浏览器调试
[HttpGet] public ActionResult getCoversationList(int CustomerId) { // 获取用户相关的聊天数据,包括个人,群,系统(可以单独获取) ...
- zzulioj--1801--xue姐的小动物(水题)
1801: xue姐的小动物 Time Limit: 1 Sec Memory Limit: 128 MB Submit: 594 Solved: 168 SubmitStatusWeb Boar ...
- Array 对象常用的方法总结
shift:删除原数组的第一项,返回删除元素的值:如果数组为空则返回undefined var arr = [1, 2, 3, 4, 5]; var out = arr.shift(); consol ...
- vSphere5安装配置视频教程
vSphere5安装配置视频教程 本文出自 "李晨光原创技术博客" 博客,请务必保留此出处http://chenguang.blog.51cto.com/350944/819550
- 使用Linux遇到的一些问题和解决方案
1.如何在重装系统或换机器以后继续使用以前用过的thunderbird邮件 执行命令thunderbird -ProfileManager以后会打开一个配置用户界面. 在里面添加一个新的配置,然后选择 ...