3.2# Facial keypoints detection

该题主要任务是检測面部关键点位置

Detect the location of keypoints on face images

问题表述

在本问题中。要求计算面部关键点的位置,即关键点在图片中的百分比坐标。

因此该问题的机理就是 [0, 1] 范围内的数值拟合,当然了,这也是一个多输出的拟合的问题。

给定图片与其相应的 30 个标签的百分比位置,标签信息例如以下:

1 2 3
left_eye_center_x left_eye_center_y right_eye_center_x
right_eye_center_y left_eye_inner_corner_x left_eye_inner_corner_y
left_eye_outer_corner_x left_eye_outer_corner_y right_eye_inner_corner_x
right_eye_inner_corner_y right_eye_outer_corner_x right_eye_outer_corner_y
left_eyebrow_inner_end_x left_eyebrow_inner_end_y left_eyebrow_outer_end_x
left_eyebrow_outer_end_y right_eyebrow_inner_end_x right_eyebrow_inner_end_y
right_eyebrow_outer_end_x right_eyebrow_outer_end_y nose_tip_x
nose_tip_y mouth_left_corner_x mouth_left_corner_y
mouth_right_corner_x mouth_right_corner_y mouth_center_top_lip_x
mouth_center_top_lip_y mouth_center_bottom_lip_x mouth_center_bottom_lip_y

当中标签完整的图片有 2140 张,当中,图片的大小为 96*96 pixels。

求解方案

求解过程例如以下:
Step 1. 选择拟合器 SVR/KernelRidge 以及相应的 kernel
Step 2. 交叉验证实验选择超參数,超參数的选择通过枚举的方法
Step 3. 选定超參数后,用全部训练集训练拟合器
Step 4. 对測试集做预測。并输出结果

实验结果

结果
First idea:

Using 30 fitter to fit 30 labels, then I got 3.48060 RMSE

Second idea
Using 1 fitter to fit 30 labels, then I got 3.43998 RMSE[Better]
Third idea
Adding symmetrical training data, then resulting in abnormal result, such as position was greater then 96.

So, I can see that the result of fitting is only cover [0,96](or [0,1])

备注

超參数选择 gamma

for G in G_para:
scores = list()
for i in range(3):
X1, X2, y1, y2 = train_test_split(train_X, train_y, test_size=0.3, random_state=42)
clf = KernelRidge(kernel='rbf', gamma=G, alpha=1e-2)
pred = clf.fit(X1, y1).predict(X2)
sco = calbais(pred, y2)
scores.append(sco)
print('G:', G, 'Score:', scores)

30 个拟合器超參数调试的方法与结果例如以下:

拟合器 KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2)
0.7:0.3 训练集划分拟合误差:
[0] 0.7792 [10] 0.9744 [20] 1.0985
[1] 0.6383 [11] 0.7451 [21] 1.2300
[2] 0.7714 [12] 0.9513 [22] 1.2636
[3] 0.6482 [13] 0.9299 [23] 1.1784
[4] 0.7355 [14] 1.0870 [24] 1.2469
[5] 0.6005 [15] 1.1898 [25] 1.2440
[6] 0.9636 [16] 0.9012 [26] 0.9444
[7] 0.7063 [17] 0.9462 [27] 1.3718
[8] 0.7214 [18] 1.1349 [28] 0.9961
[9] 0.6089 [19] 1.1669 [29] 1.5076

pandas usage:

数据统计:DataFrame.count()
数据去缺失项:DataFrame.dropna()
字符串切割:Series = Series.apply(lambda im: numpy.fromstring(im, sep=' '))

值得注意的地方:

镜像图片,似乎对本问题採用 kernel ridge 拟合器 的求解没有帮助。

Conclusion

The 30 fitter is replaced by the only 1 fitter. The grade is better.

源代码

import pandas as pd
import numpy as np
import csv as csv
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
from sklearn.svm import SVR
from sklearn.kernel_ridge import KernelRidge
from sklearn.cross_validation import cross_val_score, train_test_split train_file = 'training.csv' # 训练集数据
test_file = 'test.csv' # 測试集数据 1783 张图片
test_type = 'IdLookupTable.csv' # 測试集样表 行号, 图编号, 标签名 pd.set_option('chained_assignment',None) # csv 数据读取,返回 df (pandas)
def csvFileRead(filename):
print('Loading', filename)
df = pd.read_csv(filename, header=0, encoding='GBK')
print('Loaded') # 缺失项数据删除
if 'train' in filename:
df = df.dropna()
''' 数据查看
print('\n数据表尺寸: ', df.values.shape)
print('类别统计:\n')
print(df.count(), '\n')
'''
return df # 结果存储
def csvSave(filename, ids, predicted):
with open(filename, 'w') as mycsv:
mywriter = csv.writer(mycsv)
mywriter.writerow(['RowId','Location'])
mywriter.writerows(zip(ids, predicted)) # 训练集数据预处理
def preTrain():
print('-----------------Training reading...-----------------')
df = csvFileRead(train_file) print('Image: str -> narray')
df.Image = df.Image.apply(lambda im: np.fromstring(im, sep=' '))
print('Image transfered.\n') # problem: 7049*9046 MemoryError -> df.dropna()
X = np.vstack(df.Image.values) / 255.
X.astype(np.float32) y = df[df.columns[:-1]].values
y = (y-48)/48.
y = y.astype(np.float32)
'''
# 增加人工镜像图片
print('增加人工镜像图片...')
X, y = imageSym(X, y)
'''
X, y = shuffle(X, y, random_state=42) yd = dict()
for i in range(len(df.columns[:-1].values)):
yd[df.columns[i]] = i return X, y, yd # 预測集数据预处理
def preTest():
print('-----------------Test reading...-----------------')
df = csvFileRead(test_file) print('Image: str -> narray')
df.Image = df.Image.apply(lambda im: np.fromstring(im, sep=' '))
print('Image transfered.\n')
# 測试集图像
X = np.vstack(df.Image.values) / 255.
X.astype(np.float32) # 预測内容:行号, 图编号, 标签名
df = csvFileRead(test_type)
RowId = df.RowId.values
ImageId = df.ImageId.values - 1
FeatureName = df.FeatureName.values return RowId, ImageId, FeatureName, X # 人工特征:镜像图片
def imageSym(X, y):
nX = np.zeros(X.shape)
ny = np.zeros(y.shape)
for i in range(X.shape[0]):
temp = X[i,:].reshape(96, 96)
temp = temp[:,::-1]
nX[i,:] = temp.reshape(-1)
ny[i,0::2] = -y[i,0::2]
ny[i,1::2] = y[i,1::2]
X = np.vstack((X, nX))
y = np.vstack((y, ny))
return X, y # 30 个拟合器进行拟合
def modelfit(train_X, train_y, test_X, yd, ImageId, FeatureName):
#There are fitting codes. # 30 个拟合器相应 1 个位置
n_clf = 30
clfs = [
KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2), KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2),
KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2), KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2),
KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2), KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2),
KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2), KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2),
KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2), KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2),
KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2), KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2),
KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2), KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2),
KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2), KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2),
KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2), KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2),
KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2), KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2),
KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2), KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2),
KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2), KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2),
KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2), KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2),
KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2), KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2),
KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2), KernelRidge(kernel='rbf', gamma=2e-4, alpha=1e-2)] print('-----------------開始训练...------------------') # 超參数
C_para = np.logspace(-2, 4, 7) # SVR.C
G_para = np.logspace(-4, -3, 6) # kernel = 'rbf'.gamma
A_para = np.logspace(-3, 1, 5) # KernelRidge.alpha # 训练
for i in range(n_clf):
print('Training', i, 'clf...')
clfs[i].fit(train_X, train_y[:,i]) # 打印训练误差
predict = np.zeros([train_y.shape[0], 30]).astype(np.float32)
for i in range(n_clf):
predict[:,i] = clfs[i].predict(train_X)
print(calbais(predict, train_y))
print() print('-----------------開始预測...------------------') # 预測
pred = np.zeros([test_X.shape[0], 30]).astype(np.float32)
for i in range(n_clf):
pred[:,i] = clfs[i].predict(test_X)
predicted = np.zeros(len(FeatureName))
for i in range(len(FeatureName)):
if i % 500 == 0:
print('i =', i)
else:
pass
imageID = ImageId[i]
clfID = yd[FeatureName[i]]
predicted[i] = pred[imageID, clfID]
predicted = predicted*48.+48. return predicted # 单一拟合器,同一时候对 30 个标签做拟合
def modelfitOne(train_X, train_y, test_X, yd, ImageId, FeatureName):
n_clf = 1
# 拟合器
clf = KernelRidge(kernel='rbf', gamma=6e-4, alpha=2e-2)
# 训练
print('-----------------開始训练...------------------')
clf.fit(train_X, train_y)
# 预測
print('-----------------開始预測...------------------')
pred = clf.predict(test_X)
predicted = np.zeros(len(FeatureName))
for i in range(len(FeatureName)):
if i % 500 == 0:
print('i =', i)
else:
pass
imageID = ImageId[i]
clfID = yd[FeatureName[i]]
predicted[i] = pred[imageID, clfID]
predicted = predicted*48.+48.
return predicted # 均方根计算方法
def calbais(pred, y2):
y_diff = pred - y2
y_diff = y_diff.reshape(-1)
sco = np.linalg.norm(y_diff)/(len(y2)**0.5)
return sco # 參数选择的调试函数 # 超參数调试 X-y
def testfit(clf, train_X, train_y):
scores = list()
for i in range(3):
X1, X2, y1, y2 = train_test_split(train_X, train_y, test_size=0.3, random_state=42)
pred = clf.fit(X1, y1).predict(X2)
sco = calbais(pred, y2)
scores.append(sco)
print(scores) # 測试图
def plotface(x, y):
img = x.reshape(96, 96)
plt.imshow(img, cmap='gray')
y = y * 48 + 48
plt.scatter(y[0::2], y[1::2], marker='x', s=20)
plt.show() # 训练集数据读取
df = csvFileRead(train_file)
train_X, train_y, yd = preTrain() # 測试集数据读取
RowId, ImageId, FeatureName, test_X = preTest() # 1) 数据拟合: 30 个拟合器
predicted = modelfit(train_X, train_y, test_X, yd, ImageId, FeatureName) # 2) 数据拟合: 1 个拟合器
predicted = modelfitOne(train_X, train_y, test_X, yd, ImageId, FeatureName) # 结果存储
csvSave('KernelRidge.csv', np.linspace(1, len(predicted), len(predicted)).astype(int), predicted)

Facial keypoints detection Kaggle 竞赛系列的更多相关文章

  1. (zhuan) Using convolutional neural nets to detect facial keypoints tutorial

    Using convolutional neural nets to detect facial keypoints tutorial   this blog from: http://danieln ...

  2. Facial landmark detection - 人脸关键点检测

    Facial landmark detection  (Facial keypoints detection) OpenSourceLibrary: DLib Project Home:  http: ...

  3. 如何使用Python在Kaggle竞赛中成为Top15

    如何使用Python在Kaggle竞赛中成为Top15 Kaggle比赛是一个学习数据科学和投资时间的非常的方式,我自己通过Kaggle学习到了很多数据科学的概念和思想,在我学习编程之后的几个月就开始 ...

  4. 初窥Kaggle竞赛

    初窥Kaggle竞赛 原文地址: https://www.dataquest.io/mission/74/getting-started-with-kaggle 1: Kaggle竞赛 我们接下来将要 ...

  5. Facial Landmark Detection

    源地址:http://www.learnopencv.com/facial-landmark-detection/#comment-2471797375 OCTOBER 18, 2015 BY SAT ...

  6. OpenCV Facial Landmark Detection 人脸关键点检测

    Opencv-Facial-Landmark-Detection 利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Note: OpenCV3.4 ...

  7. 《机器学习及实践--从零开始通往Kaggle竞赛之路》

    <机器学习及实践--从零开始通往Kaggle竞赛之路> 在开始说之前一个很重要的Tip:电脑至少要求是64位的,这是我的痛. 断断续续花了个把月的时间把这本书过了一遍.这是一本非常适合基于 ...

  8. 《Python机器学习及实践:从零开始通往Kaggle竞赛之路》

    <Python 机器学习及实践–从零开始通往kaggle竞赛之路>很基础 主要介绍了Scikit-learn,顺带介绍了pandas.numpy.matplotlib.scipy. 本书代 ...

  9. 由Kaggle竞赛wiki文章流量预测引发的pandas内存优化过程分享

    pandas内存优化分享 缘由 最近在做Kaggle上的wiki文章流量预测项目,这里由于个人电脑配置问题,我一直都是用的Kaggle的kernel,但是我们知道kernel的内存限制是16G,如下: ...

随机推荐

  1. C#如何调用非托管的C++Dll

    现在在Windows下的应用程序开发,VS.Net占据了绝大多数的份额.因此很多以前搞VC++开发的人都转向用更强大的VS.Net.在这种情况下,有很多开发人员就面临了如何在C#中使用C++开发好的类 ...

  2. 记2018/5/5 qbxt 测试

    记2018/5/5 qbxt 测试 竞赛时间: 2018 年 5 月 5 日 13:30-17:00 T1 一.maze(1s,512MB): 简单的迷宫问题:给定一个n*m的迷宫,.表示可以通过,# ...

  3. System and method for controlling switching between VMM and VM using enabling value of VMM timer indicator and VMM timer value having a specified time

    In one embodiment, a method includes transitioning control to a virtual machine (VM) from a virtual ...

  4. android开发者要懂得问题答案

    我在网上看了一下有些人在博客上提出一些什么android开发者必须懂得问题,可是就是没有答案,所以我就把这些问题拷贝过来了.顺便也把全部的答案加上,为了让很多其它的开发者高速的找到答案,谢谢! 以下的 ...

  5. TTL和RS232之间的详细对比

    [背景] 之前就听过TTL,一直没搞懂其和RS232的区别. 最近,打算去买个USB转RS232的芯片,结果找到此产品: 六合一多功能USB转UART串口模块CP2102 usb TTL485 232 ...

  6. 洛谷P1876 开灯

    题目背景 该题的题目是不是感到很眼熟呢? 事实上,如果你懂的方法,该题的代码简直不能再短. 但是如果你不懂得呢?那...(自己去想) 题目描述 首先所有的灯都是关的(注意是关!),编号为1的人走过来, ...

  7. 逆波兰法(计算器)程序<无括号版>

    涉及队列.栈的运用. Java中队列可以用: Queue<String> q = new LinkedList(); 来声明,其主要的方法有: poll(),peak(),offer(), ...

  8. Css 显示删除条目效果

    样式设置

  9. kindle paperwhite 简单笔记按名称分类

    已更新python,见新博客  http://www.hrwhisper.me/archives/708 写作背景: 南京决赛比赛完那天晚上写的. 使用方法: 将My Clippings.txt 放在 ...

  10. 利用Socket进行大文件传输

    分类: WINDOWS 最近接触到利用socket进行大文件传输的技术,有些心得,与大家分享.首先看看这个过程是怎么进行的(如下图):      所以,我们需要三个socket在窗体加载的时候初始化: ...