bzoj2440

题意

求第 k 个不是完全平方数(除 1 以外)的正倍数的数。

分析

利用二分法求解,二分 x ,判断 x 是否是第 k 个数即可,那么我们就要计算 [1, x] 有几个符合条件的数。

首先本题用到容斥原理的思想,

sum = 1 的倍数的数的个数 - (4, 8, 9, ) 这些质因子个数为 1 的平方的倍数的数的个数 + (36, ) 这些质因子个数为 2 的平方的倍数的数的个数 ...

而根据莫比乌斯函数 \(\mu(n)\) 的定义:

设 \(n = p_1 ^ {k_1} \cdot p_2 ^ {k_2} \cdot\cdots\cdot p_m ^ {k_m}\) ,其中 p 为素数,则定义如下:

\(\mu(n) = \begin{cases} 1 & n = 1 \\ (-1) ^ m & \prod\limits_{i = 1} ^ {m} k_i = 1 \\ 0 & \textrm{otherwise}(k_i \gt 1) \end{cases}\)

最终得到下面的式子:

\(sum = \sum_{i=1}^{\left \lfloor \sqrt{x} \right \rfloor}\mu(i)\left \lfloor \frac{x}{i^{2}}\right \rfloor\)

我们可以通过线性筛来求出莫比乌斯函数的值。

code

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 1e6 + 10;
int not_prime[MAXN];
int prime[MAXN];
int mu[MAXN];
void getMu() {
mu[1] = 1;
int cnt = 0;
for(int i = 2; i < MAXN; i++) {
if(!not_prime[i]) {
prime[cnt++] = i;
mu[i] = -1;
}
for(int j = 0; i * prime[j] < MAXN; j++) {
not_prime[i * prime[j]] = 1;
if(i % prime[j] == 0) {
mu[i * prime[j]] = 0;
break;
}
mu[i * prime[j]] = -mu[i];
}
}
}
ll cal(ll x) {
ll s = 0;
for(ll i = 1; i * i <= x; i++) {
s += mu[i] * (ll)(x / (i * i));
}
return s;
}
int main() {
getMu();
int T;
cin >> T;
while(T--) {
ll k;
cin >> k;
ll l = 1, r = 1e10, mid = (l + r) / 2;
while(l < r) {
if(cal(mid) >= k) r = mid;
else l = mid + 1;
mid = (l + r) / 2;
}
cout << mid << endl;
}
return 0;
}

bzoj2440(莫比乌斯函数)的更多相关文章

  1. BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)

    如果能够知道不大于n的合法数有多少个,显然就可以二分答案了. 考虑怎么求这个.容易想到容斥,即枚举完全平方数.我们知道莫比乌斯函数就是此种容斥系数.筛出来就可以了. 注意二分时会爆int. #incl ...

  2. [BZOJ2440]完全平方数解题报告|莫比乌斯函数的应用

    完全平方数 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱.  这天是小X的生日 ...

  3. 【BZOJ2440】完全平方数 [莫比乌斯函数]

    完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 小X自幼就很喜欢数. 但奇怪的是 ...

  4. [bzoj2440]完全平方数[中山市选2011][莫比乌斯函数][线性筛][二分答案]

    题意:求第k个分解质因子后质因子次数均为一的数,即求第k个无平方因子数. 题解: 首先二分答案mid,那么现在就是要求出mid以内的无平方因子数的个数. 其次枚举$\sqrt{mid}$内的所有质数, ...

  5. BZOJ2440/洛谷P4318 [中山市选2011]完全平方数 莫比乌斯函数

    题意:找到第k个无平方因子数. 解法:这道题非常巧妙的运用了莫比乌斯函数的性质! 解法参考https://www.cnblogs.com/enzymii/p/8421314.html这位大佬的.这里我 ...

  6. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  7. 51nod 1244 莫比乌斯函数之和

    题目链接:51nod 1244 莫比乌斯函数之和 题解参考syh学长的博客:http://www.cnblogs.com/AOQNRMGYXLMV/p/4932537.html %%% 关于这一类求积 ...

  8. 51nod 1240 莫比乌斯函数

    题目链接:51nod 1240 莫比乌斯函数 莫比乌斯函数学习参考博客:http://www.cnblogs.com/Milkor/p/4464515.html #include<cstdio& ...

  9. 51nod1244 莫比乌斯函数之和

    推公式.f[n]=1-∑f[n/i](i=2...n).然后递归+记忆化搜索.yyl说这叫杜教筛?时间复杂度貌似是O(n 2/3)的? #include<cstdio> #include& ...

随机推荐

  1. 【Pascal's Triangle II 】cpp

    题目: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [ ...

  2. CCF-NOIP-2018 提高组(复赛) 模拟试题(一)

    T1 帽子戏法 问题描述 小 Y 有一个\(n*n*n\)的"帽子立方体" ,即一个\(n\)层的立方体,每层的帽子都 可以排成\(n*n\)的矩阵. "帽子立方体&qu ...

  3. 孤荷凌寒自学python第二十九天python的datetime.time模块

     孤荷凌寒自学python第二十九天python的datetime.time模块 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) datetime.time模块是专门用来表示纯时间部分的类. ...

  4. 孤荷凌寒自学python第二十天python的匿名函数与偏函数

    孤荷凌寒自学python第二十天python的匿名函数与偏函数 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) Python为使函数的使用更加方便高效,可以使用两种特殊的函数简化语句书写. 一 ...

  5. Java的HttpClient的实现

    HttpClient的概念就是模仿浏览器请求服务端内容,也可以做App和Server之间的链接. 这个是关于Java的HttpClient的简单实例,其实java本身也可以通过自己的net包去做,但是 ...

  6. Scala 基础(1)—— 定义变量 & 定义函数

    1. 使用 val & var 定义变量 Scala 中的变量被分为2种:val 和 var.其含义于 Java 中的 final 关键字类似. val 等同于被 final 修饰过的变量, ...

  7. hdu 2578 Dating with girls(1) (hash)

    Dating with girls(1) Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  8. freebsd网卡驱动程序详解

    freebsd网卡驱动程序详解 来源 https://blog.csdn.net/h_cszc/article/details/7776116 /* 注释:xie_minix */ /*此处为BSD申 ...

  9. 【转】oracle 删除重复记录

    转至:http://blog.163.com/aner_rui/blog/static/12131232820105901451809/ 2.保留一条(这个应该是大多数人所需要的 ^_^) Delet ...

  10. POJ 2318 TOYS | 二分+判断点在多边形内

    题意: 给一个矩形的区域(左上角为(x1,y1) 右下角为(x2,y2)),给出n对(u,v)表示(u,y1) 和 (v,y2)构成线段将矩形切割 这样构成了n+1个多边形,再给出m个点,问每个多边形 ...