题意:求矩形覆盖k次以上的区域总面积。

因为k≤10,可以在线段树上维护覆盖次数为0,...,k, ≥k的长度数量。

然后就是一个离散化以后扫描线的问题了。

离散化用的是半开半闭区间,以方便表示没有被覆盖的区间。

/*********************************************************
* --------------Alfheim-------------- *
* author AbyssalFish *
**********************************************************/
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const int maxn = 3e4+;
const int maxnc = maxn*;
const int maxk = ;
int x[maxnc], y[maxnc];
int xs[maxnc], mpx[maxnc];
int rx[maxnc], ry[maxnc]; int n, nxs, lim_k; #define para int o = 1, int l = 1, int r = nxs
#define lo (o<<1)
#define ro (o<<1|1)
#define Tvar int md = (l+r)>>1;
#define lsn lo,l,md
#define rsn ro,md,r
#define insd ql<=l&&r<=qr const int ST_SIZE = <<; int sum[ST_SIZE][maxk+];
int cnt[ST_SIZE];
#define int_byte 4 void build(para)
{
cnt[o] = ;
memset(sum[o]+,,int_byte*lim_k);
sum[o][] = mpx[r]-mpx[l];
if(r-l>){
Tvar
build(lsn);
build(rsn);
}
} inline void maintain(para)
{
if(cnt[o] >= lim_k) {
memset(sum[o],,int_byte*lim_k);
sum[o][lim_k] = mpx[r]-mpx[l];
}
else if(r - l == ) {
int k = cnt[o];
sum[o][k] = mpx[r]-mpx[l];
if(k > ) sum[o][k-] = ;
if(k < lim_k) sum[o][k+] = ;
}
else {
int lc = lo, rc = ro, c = cnt[o], k;
for(k = ; k < c; k++) sum[o][k] = ;
for(k = c; k <= lim_k; k++){
sum[o][k] = sum[lc][k-c] + sum[rc][k-c];
}
for(k = lim_k - c+; k <= lim_k; k++){
sum[o][lim_k] += sum[lc][k] + sum[rc][k];
}
} } #define upara ql, qr, d
void update(int ql, int qr, int d, para)
{
if(insd){
cnt[o] += d;
}
else {
Tvar
if(ql < md) update(upara,lsn);
if(qr > md) update(upara,rsn);
}
maintain(o,l,r);
} int *c_cmp;
bool cmp_id(int i,int j){ return c_cmp[i] < c_cmp[j]; }
bool cmp_y(int i,int j){ return y[i] < y[j] || (y[i] == y[j] && (i&)>(j&) ); } //出点下标i, i % 2 = 1 int compress(int n, int *a, int *r, int *b, int *mp)
{
for(int i = ; i < n; i++){
r[i] = i;
}
c_cmp = a;
sort(r,r+n,cmp_id);
int k = ;
mp[b[r[]] = ] = a[r[]];
for(int i = ; i < n; i++){
int j = r[i];
if(a[j] != a[r[i-]]){
mp[ b[j] = ++k ] = a[j];
}
else {
b[j] = k;
}
}
return k;
} ll solve()
{
scanf("%d%d",&n,&lim_k);
int nn = n*;
for(int i = ; i < nn; i++){
scanf("%d%d",x+i,y+i);
ry[i] = i;
}
for(int i = ; i < nn; i += ){ //[)
x[i]++; y[i]++;
}
nxs = compress(*n,x,rx,xs,mpx);
build();
sort(ry,ry+nn,cmp_y);
ll res = ;
for(int i = ; i < nn; i++){
int p = ry[i], q = p^;
if(i) res += (ll)sum[][lim_k]*(y[p]-y[ry[i-]]);
if(y[p] < y[q]){
//assert((q&1) == 1);
update(xs[p],xs[q],);
}
else {
update(xs[q],xs[p],-);
} }
return res;
} //#define LOCAL
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
//cout<<log2(maxnc);
int T, ks = ; scanf("%d",&T);
while(++ks <= T){
printf("Case %d: %lld\n",ks,solve());
}
return ;
}

UVA 11983 Weird Advertisement的更多相关文章

  1. UVA 11983 Weird Advertisement(线段树求矩形并的面积)

    UVA 11983 题目大意是说给你N个矩形,让你求被覆盖k次以上的点的总个数(x,y<1e9) 首先这个题有一个转化,吧每个矩形的x2,y2+1这样就转化为了求N个矩形被覆盖k次以上的区域的面 ...

  2. uva 11983 Weird Advertisement 扫描线

    Weird Advertisement Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/probl ...

  3. UVA 11983 Weird Advertisement --线段树求矩形问题

    题意:给出n个矩形,求矩形中被覆盖K次以上的面积的和. 解法:整体与求矩形面积并差不多,不过在更新pushup改变len的时候,要有一层循环,来更新tree[rt].len[i],其中tree[rt] ...

  4. UVA11983 - Weird Advertisement(扫描线)

    UVA11983 - Weird Advertisement(扫描线) 题目链接 题目大意:给你n个覆盖矩形,问哪些整数点是被覆盖了k次. 题目大意:这题和hdu1542是一个题型.可是这题求的是覆盖 ...

  5. 线段树总结 (转载 里面有扫描线类 还有NotOnlySuccess线段树大神的地址)

    转载自:http://blog.csdn.net/shiqi_614/article/details/8228102 之前做了些线段树相关的题目,开学一段时间后,想着把它整理下,完成了大牛NotOnl ...

  6. [转载]完全版线段树 by notonlysuccess大牛

    原文出处:http://www.notonlysuccess.com/ (好像现在这个博客已经挂掉了,在网上找到的全部都是转载) 今天在清北学堂听课,听到了一些很令人吃惊的消息.至于这消息具体是啥,等 ...

  7. 【转】线段树完全版~by NotOnlySuccess

    线段树完全版  ~by NotOnlySuccess 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时觉得挺自豪的,还去pku打广告,但是现在我自己都不太好意思去看那篇文章了,觉 ...

  8. 《完全版线段树》——notonlysuccess

    转载自:NotOnlySuccess的博客 [完全版]线段树 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时觉得挺自豪的,还去pku打广告,但是现在我自己都不太好意思去看那篇文 ...

  9. 【转】 线段树完全版 ~by NotOnlySuccess

    载自:NotOnlySuccess的博客 [完全版]线段树 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时觉得挺自豪的,还去pku打广告,但是现在我自己都不太好意思去看那篇文章 ...

随机推荐

  1. 查看sqlserver版本

    select  serverproperty('productversion'),serverproperty('productlevel'),serverproperty('edition')

  2. Autel MaxiSys MS908CV Diagnostic System for Commercial Vehicles

    As a new member of Autel’s MaxiSys family, the MaxiSys CV is built on the powerful MaxiSys 908 platf ...

  3. java动态数组笔记

    动态数组: 在java.lang.reflect包下提供了Array类,包括一系列static方法,通过这些方法可动态的创建数组.给元素赋值.取出元素值等等 //理解数组引用——下面定义的objs数组 ...

  4. Problem09 求完数

    题目:一个数如果恰好等于它的因子之和,这个数就称为"完数". 分析:例如6=1+2+3. 编程找出1000以内的所有完数. 假如整数n除以m,结果是无余数的整数,那么我们称m就是n ...

  5. GBDT,FM,FFM推导

    GBDT推导: https://xgboost.readthedocs.io/en/latest/tutorials/model.html FM,FFM推导: https://tech.meituan ...

  6. [转]jQuery的.live()和.die()

    本文转自:http://www.cnblogs.com/dumuqiao/archive/2011/09/09/2172513.html 翻译原文地址:http://www.alfajango.com ...

  7. SSM项目spring配置文件详细步骤(分门别类、灵巧记忆)

    spring-dao.xml文件 1.配置外部db.property文件: <context:property-placeholder location="classpath:jdbc ...

  8. U盘中毒问题解决

    背景: 最近在学校的打印店里打印东西,结果过了一段时间再使用的时候发现,U盘中的文件夹都成了快捷方式,只有一个pdf文件是好的,无奈,其中有比较重要的东西,所以寻求解决办法,最终解决,为方便以后查阅, ...

  9. a :hover 和a:hover 区别

    article a :hover {  color: red;} 上面表示 article 内所有a 标签的所有子标签在hover时是红色 article a:hover {  color: red; ...

  10. mysql主从数据库错误处理

    方法一:忽略错误后,继续同步 该方法适用于主从库数据相差不大,或者要求数据可以不完全统一的情况,数据要求不严格的情况 解决: stop slave; #表示跳过一步错误,后面的数字可变set glob ...