POJ 1265 Area (Pick定理 & 多边形面积)
题目链接:POJ 1265
Problem Description
Being well known for its highly innovative products, Merck would definitely be a good target for industrial espionage. To protect its brand-new research and development facility the company has installed the latest system of surveillance robots patrolling the area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted. Not being able to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight walls are used. Figure 1 shows the course of a robot around an example area.
Figure 1: Example area.You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself.
Input
The first line contains the number of scenarios.
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100 units.
Output
The output for every scenario begins with a line containing 揝cenario #i:� where i is the number of the scenario starting at 1. Then print a single line containing I, E, and A, the area A rounded to one digit after the decimal point. Separate the three numbers by two single blanks. Terminate the output for the scenario with a blank line.
Sample Input
2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3
Sample Output
Scenario #1:
0 4 1.0
Scenario #2:
12 16 19.0
Source
Solution
题意
给定一个多边形,所有点都在格点上,求多边形内部的点,边上的点和多边形的面积。
思路
Pick定理
Pick 定理:多边形面积 \(A\) 和内部格点数目 \(i\),边上格点数目 \(b\) 的关系为 \(A = i + \frac{b}{2} - 1\) 。
相关证明见 Pick's theorem
多边形面积:按顺序求相邻两点与原点组成的向量的向量的叉积之和。
多边形边上的点:若一条边的两个点都在格点上,则该边上的格点数为 \(gcd(dx, dy)\),\(dx\) 和 \(dy\) 分别为线段横向占的点数和纵向占的点数。
Code
#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef double db;
const db eps = 1e-10;
const db pi = acos(-1.0);
const ll inf = 0x3f3f3f3f3f3f3f3f;
const ll maxn = 1e5 + 10;
inline int dcmp(db x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
}
class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
void input() {
scanf("%lf%lf", &x, &y);
}
bool operator<(const Point &a) const {
return (!dcmp(x - a.x))? dcmp(y - a.y) < 0: x < a.x;
}
bool operator==(const Point &a) const {
return dcmp(x - a.x) == 0 && dcmp(y - a.y) == 0;
}
db dis2(const Point a) {
return pow(x - a.x, 2) + pow(y - a.y, 2);
}
db dis(const Point a) {
return sqrt(dis2(a));
}
db dis2() {
return x * x + y * y;
}
db dis() {
return sqrt(dis2());
}
Point operator+(const Point a) {
return Point(x + a.x, y + a.y);
}
Point operator-(const Point a) {
return Point(x - a.x, y - a.y);
}
Point operator*(double p) {
return Point(x * p, y * p);
}
Point operator/(double p) {
return Point(x / p, y / p);
}
db dot(const Point a) {
return x * a.x + y * a.y;
}
db cross(const Point a) {
return x * a.y - y * a.x;
}
};
Point p[110];
int gcd(int a, int b) {
return b == 0? a: gcd(b, a % b);
}
int main() {
int T;
scanf("%d", &T);
for(int _ = 1; _ <= T; ++_) {
int n;
scanf("%d", &n);
int on = 0;
db s = 0;
for(int i = 1; i <= n; ++i) {
int x, y;
scanf("%d%d", &x, &y);
p[i] = p[i - 1] + Point(x, y);
on += gcd(abs(x), abs(y));
s += (p[i - 1]).cross(p[i]);
}
s *= 0.5;
int in = (int)s - on / 2 + 1;
printf("Scenario #%d:\n", _);
printf("%d %d %.1lf\n\n", in, on, s);
}
return 0;
}
POJ 1265 Area (Pick定理 & 多边形面积)的更多相关文章
- poj 1265 Area (Pick定理+求面积)
链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- POJ1265——Area(Pick定理+多边形面积)
Area DescriptionBeing well known for its highly innovative products, Merck would definitely be a goo ...
- poj 1265 Area(pick定理)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4373 Accepted: 1983 Description Bein ...
- [poj 1265]Area[Pick定理][三角剖分]
题意: 给出机器人移动的向量, 计算包围区域的内部整点, 边上整点, 面积. 思路: 面积是用三角剖分, 边上整点与GCD有关, 内部整点套用Pick定理. S = I + E / 2 - 1 I 为 ...
- poj 1265 Area( pick 定理 )
题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标 变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...
- Area - POJ 1265(pick定理求格点数+求多边形面积)
题目大意:以原点为起点然后每次增加一个x,y的值,求出来最后在多边形边上的点有多少个,内部的点有多少个,多边形的面积是多少. 分析: 1.以格子点为顶点的线段,覆盖的点的个数为GCD(dx,dy),其 ...
- poj 1265 Area 面积+多边形内点数
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5861 Accepted: 2612 Description ...
- POJ 1265 Area (pick定理)
题目大意:已知机器人行走步数及每一步的坐标变化量,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:叉积求面积,pick定理求点. pick定理:面积=内部点数+边上点数/2-1 ...
- pick定理:面积=内部整数点数+边上整数点数/2-1
//pick定理:面积=内部整数点数+边上整数点数/2-1 // POJ 2954 #include <iostream> #include <cstdio> #include ...
随机推荐
- 如何查看red gate安装时的log
安装界面,点击左上角的log open log file C:\Users\clu\AppData\Local\Temp\{69EEB6B0-A9AD-4BD4-8231-92C992F1FF05}\ ...
- SSH的两种登录方式
ssh客户端使用的是Xshell,windows环境. 第一种方式,用户名密码方式 原理如下: 客户端发起ssh请求之后,服务器把自己的公钥传给客户端 客户端输入服务器密码通过公钥加密之后传给服务器 ...
- PHP-版本问题
PHP 5.3 以下版本 无法用下标直接取得函数返回的数组 eg: $val_0 = explode(',', $val)[0]//报错 #要改成: $exploded_val = explode(' ...
- python学习笔记:使用freeze命令迁移模块
使用freeze 给所有模块搬家 导出安装模块的文档pip freeze > my_freeze.txt 或者指定地址pip freeze > e:\my_freeze.txt 在另一个环 ...
- Python 字符串常用判断函数
判断字符串常用函数: S代表某字符串 S.isalnum() 所有字符都是数字或字母,为真返回Ture,否则返回False S.isalha() 所有字符都是字母,为真返回Ture,否则返回 ...
- 两分钟学会Unity3D布娃娃的使用
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/wangbin_jxust/article/details/28587233 在RPG游戏中,为了让人 ...
- 服务bindService()方法启动服务
public class MainActivity extends Activity { private EditText studentno; private ServiceConnection c ...
- System.Web.Mvc 4.0.0.1 和 4.0.0.0 区别
只是一个安全补丁的问题: http://www.microsoft.com/zh-cn/download/details.aspx?id=44533&WT.mc_id=rss_alldown ...
- offset 、 client 和 scroll - PC端网页特效
1.元素偏移量 offset 系列 1.1 offset 就是偏移量,使用 offset 系列相关属性可以 动态 得到该元素的位置(偏移).大小等. 注意: 1.获得元素距离带有定位父元素的位置 2 ...
- window下Mysql 恢复Delete删除的数据
转载:https://www.cnblogs.com/q149072205/p/11940591.html 本机用的Navicat连mysql测试DB又连了正式DB,因为本地与正式要频繁操作所以都打开 ...
