POJ 1265 Area (Pick定理 & 多边形面积)
题目链接:POJ 1265
Problem Description
Being well known for its highly innovative products, Merck would definitely be a good target for industrial espionage. To protect its brand-new research and development facility the company has installed the latest system of surveillance robots patrolling the area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted. Not being able to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight walls are used. Figure 1 shows the course of a robot around an example area.
Figure 1: Example area.You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself.
Input
The first line contains the number of scenarios.
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100 units.
Output
The output for every scenario begins with a line containing 揝cenario #i:� where i is the number of the scenario starting at 1. Then print a single line containing I, E, and A, the area A rounded to one digit after the decimal point. Separate the three numbers by two single blanks. Terminate the output for the scenario with a blank line.
Sample Input
2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3
Sample Output
Scenario #1:
0 4 1.0
Scenario #2:
12 16 19.0
Source
Solution
题意
给定一个多边形,所有点都在格点上,求多边形内部的点,边上的点和多边形的面积。
思路
Pick定理
Pick 定理:多边形面积 \(A\) 和内部格点数目 \(i\),边上格点数目 \(b\) 的关系为 \(A = i + \frac{b}{2} - 1\) 。
相关证明见 Pick's theorem
多边形面积:按顺序求相邻两点与原点组成的向量的向量的叉积之和。
多边形边上的点:若一条边的两个点都在格点上,则该边上的格点数为 \(gcd(dx, dy)\),\(dx\) 和 \(dy\) 分别为线段横向占的点数和纵向占的点数。
Code
#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef double db;
const db eps = 1e-10;
const db pi = acos(-1.0);
const ll inf = 0x3f3f3f3f3f3f3f3f;
const ll maxn = 1e5 + 10;
inline int dcmp(db x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
}
class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
void input() {
scanf("%lf%lf", &x, &y);
}
bool operator<(const Point &a) const {
return (!dcmp(x - a.x))? dcmp(y - a.y) < 0: x < a.x;
}
bool operator==(const Point &a) const {
return dcmp(x - a.x) == 0 && dcmp(y - a.y) == 0;
}
db dis2(const Point a) {
return pow(x - a.x, 2) + pow(y - a.y, 2);
}
db dis(const Point a) {
return sqrt(dis2(a));
}
db dis2() {
return x * x + y * y;
}
db dis() {
return sqrt(dis2());
}
Point operator+(const Point a) {
return Point(x + a.x, y + a.y);
}
Point operator-(const Point a) {
return Point(x - a.x, y - a.y);
}
Point operator*(double p) {
return Point(x * p, y * p);
}
Point operator/(double p) {
return Point(x / p, y / p);
}
db dot(const Point a) {
return x * a.x + y * a.y;
}
db cross(const Point a) {
return x * a.y - y * a.x;
}
};
Point p[110];
int gcd(int a, int b) {
return b == 0? a: gcd(b, a % b);
}
int main() {
int T;
scanf("%d", &T);
for(int _ = 1; _ <= T; ++_) {
int n;
scanf("%d", &n);
int on = 0;
db s = 0;
for(int i = 1; i <= n; ++i) {
int x, y;
scanf("%d%d", &x, &y);
p[i] = p[i - 1] + Point(x, y);
on += gcd(abs(x), abs(y));
s += (p[i - 1]).cross(p[i]);
}
s *= 0.5;
int in = (int)s - on / 2 + 1;
printf("Scenario #%d:\n", _);
printf("%d %d %.1lf\n\n", in, on, s);
}
return 0;
}
POJ 1265 Area (Pick定理 & 多边形面积)的更多相关文章
- poj 1265 Area (Pick定理+求面积)
链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- POJ1265——Area(Pick定理+多边形面积)
Area DescriptionBeing well known for its highly innovative products, Merck would definitely be a goo ...
- poj 1265 Area(pick定理)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4373 Accepted: 1983 Description Bein ...
- [poj 1265]Area[Pick定理][三角剖分]
题意: 给出机器人移动的向量, 计算包围区域的内部整点, 边上整点, 面积. 思路: 面积是用三角剖分, 边上整点与GCD有关, 内部整点套用Pick定理. S = I + E / 2 - 1 I 为 ...
- poj 1265 Area( pick 定理 )
题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标 变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...
- Area - POJ 1265(pick定理求格点数+求多边形面积)
题目大意:以原点为起点然后每次增加一个x,y的值,求出来最后在多边形边上的点有多少个,内部的点有多少个,多边形的面积是多少. 分析: 1.以格子点为顶点的线段,覆盖的点的个数为GCD(dx,dy),其 ...
- poj 1265 Area 面积+多边形内点数
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5861 Accepted: 2612 Description ...
- POJ 1265 Area (pick定理)
题目大意:已知机器人行走步数及每一步的坐标变化量,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:叉积求面积,pick定理求点. pick定理:面积=内部点数+边上点数/2-1 ...
- pick定理:面积=内部整数点数+边上整数点数/2-1
//pick定理:面积=内部整数点数+边上整数点数/2-1 // POJ 2954 #include <iostream> #include <cstdio> #include ...
随机推荐
- JS制作二级联动
JS制作二级联动 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://ww ...
- mac查看python安装路径
1.terminal : input: which Python 或者 which Python3 2.terminal: input : python --->import sys --- ...
- javascript闭包实现缓存小案例
/* * 闭包实现缓存 * 属性:有个键--值 --->所以可以将缓存数据存放在一个对象中 * 方法:缓存存储 setCache * 缓存的获取 getCache * */ function ...
- 开发效率优化之自动化构建系统Gradle(二)上篇
阿里P7移动互联网架构师进阶视频(每日更新中)免费学习请点击:https://space.bilibili.com/474380680 本篇文章将以下两个内容来介绍自动化构建系统Gradle: gra ...
- Oracle执行计划不走索引的原因总结
在Oracle数据库操作中,为什么有时一个表的某个字段明明有索引,当观察一些语的执行计划确不走索引呢?如何解决呢?本文我们主要就介绍这部分内容,接下来就让我们一起来了解一下. 不走索引大体有以下几个原 ...
- Optparse 简介
optparse 这个库的主要作用是可以用为脚本提供传递命令参数功能 一个简单的例子 def main(): parser = OptionParser(usage = "usage: %p ...
- 【总】.NET Core 2.0 详解
ASP.NET Core 认证与授权[7]:动态授权 雨夜朦胧 2017-11-24 11:21 阅读:7063 评论:19 ASP.NET Core 认证与授权[6]:授权策略是怎么执行的? 雨夜朦 ...
- 1、eureka注册中心单机
Spring Cloud 2.x系列之 eureka注册中心单机 一.简介 Spring Cloud Eureka是Spring Cloud Netflix项目下的服务治理模块.而Spring Clo ...
- Spark使用Java读取mysql数据和保存数据到mysql
原文引自:http://blog.csdn.net/fengzhimohan/article/details/78471952 项目应用需要利用Spark读取mysql数据进行数据分析,然后将分析结果 ...
- 2018-8-10-win10-uwp-ping
title author date CreateTime categories win10 uwp ping lindexi 2018-08-10 19:17:19 +0800 2018-2-13 1 ...
