题目链接:POJ 1265

Problem Description

Being well known for its highly innovative products, Merck would definitely be a good target for industrial espionage. To protect its brand-new research and development facility the company has installed the latest system of surveillance robots patrolling the area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted. Not being able to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight walls are used. Figure 1 shows the course of a robot around an example area.



Figure 1: Example area.

You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself.

Input

The first line contains the number of scenarios.

For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100 units.

Output

The output for every scenario begins with a line containing 揝cenario #i:� where i is the number of the scenario starting at 1. Then print a single line containing I, E, and A, the area A rounded to one digit after the decimal point. Separate the three numbers by two single blanks. Terminate the output for the scenario with a blank line.

Sample Input

2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3

Sample Output

Scenario #1:
0 4 1.0 Scenario #2:
12 16 19.0

Source

Northwestern Europe 2001

Solution

题意

给定一个多边形,所有点都在格点上,求多边形内部的点,边上的点和多边形的面积。

思路

Pick定理

Pick 定理:多边形面积 \(A\) 和内部格点数目 \(i\),边上格点数目 \(b\) 的关系为 \(A = i + \frac{b}{2} - 1\) 。

相关证明见 Pick's theorem

多边形面积:按顺序求相邻两点与原点组成的向量的向量的叉积之和。

多边形边上的点:若一条边的两个点都在格点上,则该边上的格点数为 \(gcd(dx, dy)\),\(dx\) 和 \(dy\) 分别为线段横向占的点数和纵向占的点数。

Code

#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef double db;
const db eps = 1e-10;
const db pi = acos(-1.0);
const ll inf = 0x3f3f3f3f3f3f3f3f;
const ll maxn = 1e5 + 10; inline int dcmp(db x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
} class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
void input() {
scanf("%lf%lf", &x, &y);
}
bool operator<(const Point &a) const {
return (!dcmp(x - a.x))? dcmp(y - a.y) < 0: x < a.x;
}
bool operator==(const Point &a) const {
return dcmp(x - a.x) == 0 && dcmp(y - a.y) == 0;
}
db dis2(const Point a) {
return pow(x - a.x, 2) + pow(y - a.y, 2);
}
db dis(const Point a) {
return sqrt(dis2(a));
}
db dis2() {
return x * x + y * y;
}
db dis() {
return sqrt(dis2());
}
Point operator+(const Point a) {
return Point(x + a.x, y + a.y);
}
Point operator-(const Point a) {
return Point(x - a.x, y - a.y);
}
Point operator*(double p) {
return Point(x * p, y * p);
}
Point operator/(double p) {
return Point(x / p, y / p);
}
db dot(const Point a) {
return x * a.x + y * a.y;
}
db cross(const Point a) {
return x * a.y - y * a.x;
}
}; Point p[110]; int gcd(int a, int b) {
return b == 0? a: gcd(b, a % b);
} int main() {
int T;
scanf("%d", &T);
for(int _ = 1; _ <= T; ++_) {
int n;
scanf("%d", &n);
int on = 0;
db s = 0;
for(int i = 1; i <= n; ++i) {
int x, y;
scanf("%d%d", &x, &y);
p[i] = p[i - 1] + Point(x, y);
on += gcd(abs(x), abs(y));
s += (p[i - 1]).cross(p[i]);
}
s *= 0.5;
int in = (int)s - on / 2 + 1;
printf("Scenario #%d:\n", _);
printf("%d %d %.1lf\n\n", in, on, s);
}
return 0;
}

POJ 1265 Area (Pick定理 & 多边形面积)的更多相关文章

  1. poj 1265 Area (Pick定理+求面积)

    链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:  ...

  2. POJ1265——Area(Pick定理+多边形面积)

    Area DescriptionBeing well known for its highly innovative products, Merck would definitely be a goo ...

  3. poj 1265 Area(pick定理)

    Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4373 Accepted: 1983 Description Bein ...

  4. [poj 1265]Area[Pick定理][三角剖分]

    题意: 给出机器人移动的向量, 计算包围区域的内部整点, 边上整点, 面积. 思路: 面积是用三角剖分, 边上整点与GCD有关, 内部整点套用Pick定理. S = I + E / 2 - 1 I 为 ...

  5. poj 1265 Area( pick 定理 )

    题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标   变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...

  6. Area - POJ 1265(pick定理求格点数+求多边形面积)

    题目大意:以原点为起点然后每次增加一个x,y的值,求出来最后在多边形边上的点有多少个,内部的点有多少个,多边形的面积是多少. 分析: 1.以格子点为顶点的线段,覆盖的点的个数为GCD(dx,dy),其 ...

  7. poj 1265 Area 面积+多边形内点数

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5861   Accepted: 2612 Description ...

  8. POJ 1265 Area (pick定理)

    题目大意:已知机器人行走步数及每一步的坐标变化量,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:叉积求面积,pick定理求点. pick定理:面积=内部点数+边上点数/2-1 ...

  9. pick定理:面积=内部整数点数+边上整数点数/2-1

    //pick定理:面积=内部整数点数+边上整数点数/2-1 // POJ 2954 #include <iostream> #include <cstdio> #include ...

随机推荐

  1. (13)C++ 多态

    虚析构和纯虚析构用来解决父类指针释放子类对象的问题,此时会不调用子类的析构函数 如果子类没有堆数据,可以不使用虚析构

  2. Windows-右键菜单添加选项

    新建 add.reg 输入选项名和选项对应程序路径 Windows Registry Editor Version 5.00 [HKEY_CLASSES_ROOT\*\shell\选项名] [HKEY ...

  3. JS-监听整个页面上的DOM树变化

    # [在线预览](https://jsfiddle.net/1010543618/fyf913t0/) ## 方法 - 使用<Web API 接口>的<MutationObserve ...

  4. composer 手动安装及简单使用 windows

    1.配置系统变量 Path 计算机->高级系统设置->环境变量->找到系统变量Path  双击 加入  ;php根目录地址:php中ext地址    如 :“;D:\phpStudy ...

  5. msfpayload的用法

    daniel@daniel-mint ~/msf/metasploit-framework $ ruby msfpayload windows/exec CMD=calc.exe C WARNING: ...

  6. Java内部类类型

    可以在类中的任何位置定义内部类,并在其中编写Java语句.有三种类型的内部类. 内部类的类型取决于位置和声明的方式. 成员内部类 局部内部类 匿名内部类 成员内部类 成员内部类在类中声明的方式与声明成 ...

  7. 这 17 个 JVM 参数,高级 Java 必须掌握!

    作者:SimpleSmile https://www.cnblogs.com/Simple-Object/p/10272326.html前言 大家都知道,jvm在启动的时候,会执行默认的一些参数.一般 ...

  8. php中mkdir()函数的权限问题(转)

    问题描述: 使用以下php代码创建了一个目录,期望目录的权限是0777,实际结果是0755 mkdir('./aa/',0777); 分析与测试结果: 1.mkdir()函数指定的目录权限只能小于等于 ...

  9. python- 属性 静态方法,类方法

    一,面向对象结构与成员 1,1 面向对象结构分析: 那么每个大区域又可以分为多个小部分: class A: company_name = '老男孩教育' # 静态变量(静态字段) __iphone = ...

  10. window下eclipse搭建hadoop环境

    1 生成插件jar 1.1 安装java,ant运行环境 1.2 下载hadoop-2.5.0.tar.gz并解压到指定目录 1.3 下载hadoop2x-eclipse-plugin-master. ...