BZOJ3745 / SP22343 NORMA2 - Norma 分治,CDQ分治
要命的题目。
写法:分类讨论进行计算。
枚举过每一个\(mid\)的所有区间。对于左端点\(i∈[l, mid - 1]\),向左推并计算\([l,mid]\)范围内的最大\(/\)最小值。
然后右端点\(p\)分三种类型考虑。
\(p∈[mid + 1, p1 - 1]\),其中\(p1\)是第一次出现比\(maxw\)大或者比\(minw\)小的数的位置。
\(p∈[p1, p2 - 1]\),其中\(p2\)是第二次出现比\(maxw\)大或者比\(minw\)小的数的位置。
\(p∈[p2, r]\),\(r\)是当前枚举区间的右端点。
其中情况一高斯求和,情况二和情况三可以化为前缀最大最小值之和\(/\)积带几个系数的形式\(O(N)\)维护。
要命原因:取膜。
两年\(OI\)一场空,_______。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 500000 + 5;
const LL Mod = 1000000000;
#define min(x,y) (x < y ? x : y)
#define max(x,y) (x > y ? x : y)
#define mul(x,y) ((1ll * (x % Mod) * (y % Mod)) % Mod)
#define add(x,y) ((0ll + (x % Mod) + (y % Mod)) % Mod)
int n, arr[N]; LL ans;
int _maxw[N], _minw[N];
LL mn1[N], mn2[N], mx1[N], mx2[N], mnmx1[N], mnmx2[N];
int get_maxp (int w, int l, int r) {
if (_maxw[r] <= w) return r + 1;
while (l < r) {
int mid = (l + r) >> 1;
if (_maxw[mid] > w) {
r = mid;
} else {
l = mid + 1;
}
}
return r;
}
int get_minp (int w, int l, int r) {
if (_minw[r] >= w) return r + 1;
while (l < r) {
int mid = (l + r) >> 1;
if (_minw[mid] < w) {
r = mid;
} else {
l = mid + 1;
}
}
return r;
}
void cdq (int l, int r) {
if (l == r) {
ans = add (ans, mul (arr[l], arr[r]));
return;
}
int mid = (l + r) >> 1;
cdq (l, mid + 0);
cdq (mid + 1, r);
int maxw = arr[mid], minw = arr[mid];
mx1[mid - 1] = mx2[mid - 1] = 0;
mn1[mid - 1] = mn2[mid - 1] = 0;
mnmx1[mid - 1] = mnmx2[mid - 1] = 0;
_maxw[mid] = _minw[mid] = arr[mid];
for (int i = mid + 1; i <= r; ++i) {
_maxw[i] = max (_maxw[i - 1], arr[i]);
_minw[i] = min (_minw[i - 1], arr[i]);
}
for (int p = mid; p <= r; ++p) {
mx1[p] = add (mx1[p - 1], mul (_maxw[p], (p + 1)));
mx2[p] = add (mx2[p - 1], _maxw[p]);
mn1[p] = add (mn1[p - 1], mul (_minw[p], (p + 1)));
mn2[p] = add (mn2[p - 1], _minw[p]);
mnmx1[p] = add (mnmx1[p - 1], mul (_maxw[p], mul (_minw[p], (p + 1))));
mnmx2[p] = add (mnmx2[p - 1], mul (_maxw[p], _minw[p]));
}
for (int i = mid; i >= l; --i) {
maxw = max (maxw, arr[i]);
minw = min (minw, arr[i]);
int p1 = get_maxp (maxw, mid + 1, r); // [mid + 1, r]内第一个比maxw大的地方
int p2 = get_minp (minw, mid + 1, r); // [mid + 1, r]内第一个比minw小的地方
if (p1 > p2) swap (p1, p2); // 不关注大小,主要看划分
// cout << p1 << " " << p2 << endl;
ans = add (ans, mul (1ll * (p1 - mid - 1) * (p1 + mid - i * 2 + 2) / 2, mul (minw, maxw))); // Part 1
if (arr[p1] > maxw) {
ans = add (ans, mul (minw, add (add (mx1[p2 - 1], -mx1[p1 - 1]), -mul (i, add (mx2[p2 - 1], -mx2[p1 - 1])))));
} else {
ans = add (ans, mul (maxw, add (add (mn1[p2 - 1], -mn1[p1 - 1]), -mul (i, add (mn2[p2 - 1], -mn2[p1 - 1])))));
}
if (p2 <= r) {
ans = add (ans, add (add (mnmx1[r], -mnmx1[p2 - 1]), -mul (i, add (mnmx2[r], -mnmx2[p2 - 1]))));
}
}
}
signed main () {
// freopen ("data.in", "r", stdin);
cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> arr[i];
}
cdq (1, n);
// cout << ans << endl;
cout << (((ans % Mod) + Mod) % Mod) << endl;;
}
BZOJ3745 / SP22343 NORMA2 - Norma 分治,CDQ分治的更多相关文章
- 【BZOJ3745】Norma(CDQ分治)
[BZOJ3745]Norma(CDQ分治) 题面 BZOJ 洛谷 题解 这种问题直接做不好做,显然需要一定的优化.考虑\(CDQ\)分治. 现在唯一需要考虑的就是跨越当前中间节点的所有区间如何计算答 ...
- [bzoj] 3263 陌上花开 洛谷 P3810 三维偏序|| CDQ分治 && CDQ分治讲解
原题 定义一个点比另一个点大为当且仅当这个点的三个值分别大于等于另一个点的三个值.每比一个点大就为加一等级,求每个等级的点的数量. 显然的三维偏序问题,CDQ的板子题. CDQ分治: CDQ分治是一种 ...
- UOJ #7 NOI2014购票(点分治+cdq分治+斜率优化+动态规划)
重写一遍很久以前写过的题. 考虑链上的问题.容易想到设f[i]为i到1的最少购票费用,转移有f[i]=min{f[j]+(dep[i]-dep[j])*p[i]+q[i]} (dep[i]-dep[j ...
- 点分治&cdq分治 总结
游荡的孤高灵魂不需要羁绊之处. 洛谷题单 点分治 前置芝士 树的重心 树分治 例题略解 P3806 [模板]点分治1 板子题,先暴力找到整棵树的重心,然后先求出重心到各点的距离,进而算出他所在树的各个 ...
- 洛谷SP22343 NORMA2 - Norma(分治,前缀和)
洛谷题目传送门 这题推式子恶心..... 考虑分治,每次统计跨过\(mid\)的所有区间的答案和.\(i\)从\(mid-1\)到\(l\)枚举,统计以\(i\)为左端点的所有区间. 我们先维护好\( ...
- [BZOJ3672][Noi2014]购票 斜率优化+点分治+cdq分治
3672: [Noi2014]购票 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1749 Solved: 885[Submit][Status][ ...
- 【BZOJ4237】稻草人(CDQ分治,单调栈)
[BZOJ4237]稻草人(CDQ分治,单调栈) 题面 BZOJ 题解 \(CDQ\)分治好题呀 假设固定一个左下角的点 那么,我们可以找到的右下角长什么样子??? 发现什么? 在右侧是一个单调递减的 ...
- 一篇自己都看不懂的CDQ分治&整体二分学习笔记
作为一个永不咕咕咕的博主,我来更笔记辣qaq CDQ分治 CDQ分治的思想还是比较简单的.它的基本流程是: \(1.\)将所有修改操作和查询操作按照时间顺序并在一起,形成一段序列.显然,会影响查询操作 ...
- 浅谈CDQ分治与偏序问题
初识CDQ分治 CDQ分治是一个好东西,一直听着dalao们说所以就去学了下. CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. ...
随机推荐
- Windows下搭建Docker与Kubernetes(DevOps一)
Docker与Kubernetes (二)搭建 开通 Hyper-V 安装Docker for Windows 开通Kubernetes 3.关键概念 PodKubernetes 中的最小单元,一个 ...
- 哈希表 HashTable(又名散列表)
简介 其实通过标题上哈希表的英文名HashTable,我们就可以看出这是一个组合的数据结构Hash+Table. Hash是什么?它是一个函数,作用可以通过一个公式来表示: index = HashF ...
- C#学习笔记一(概念,对象与类型,继承)
一.基础 1.CLR为公共语言运行库,类似于JVM 2..NET Framwork是一个独立发布的程序包,其包含了CLR,类库及相关的语言编辑器等工具,类似于JDK,除了C#,还有其他几种语言在CLR ...
- 描述下数据库中的事务--ACID各个的特点
1. 原子性(Atomicity) 在一个事务内的操作,要么全部成功,要么全部失败. 2. 一致性(Consistency) 数据库从一个一致性状态,转移到另一个一致性状态. 3. 隔离性(Isola ...
- 【CUDA开发】CUDA的安装、Nvidia显卡型号及测试
说明:想要让Theano在Windows8.1下能利用GPU并行运算,必须有支持GPU并行运算的Nvidia显卡,且要安装CUDA,千万不要电脑上是Intel或AMD的显卡,却要编写CUDA. 文中用 ...
- 【Qt开发】布局控件之间的间距设置
void QLayout::setContentsMargins ( int left, int top, int right, int bottom ) Sets the left, top, ri ...
- 2019JAVA第四次实验报告
JAVA实验报告 班级 计科二班 学号 20188442 姓名 吴怡君 完成时间 2019/9/29 评分等级 实验四 类的继承 1.实验目的 掌握类的继承方法: 变量的继承和覆盖,方法的继承.重载和 ...
- linux项目运行环境搭建
# 命令查看可修改分辨率 xrandr # 选择要修改的分辨率 xrandr -s 1360x768# 删除文件命令 rm -rf 文件名/ # XShell工具进行远程连接了 sudo apt ...
- next_permutation() 全排列函数
next_permutation() 全排列函数 这个函数是STL自带的,用来求出该数组的下一个排列组合 相当之好用,懒人专用 适用于不想自己用dfs写全排列的同学(结尾附上dfs代码) 洛谷oj可去 ...
- mysql 聚合函数(2)
平均 svg select avg(sal + IFNULL(comm,0)) as avg_sal from t_emp 总和 sum select sum(sal + IFNULL(comm,0) ...