题目大意:给定两个序列 A、B,现可以将 A 序列的每一个元素的值增加或减少 C,求 \(\sum\limits_{i=0}^{n-1}(a_i-b_{i+k})^2\) 的最小值是多少。

题解:先不考虑环的问题,仅考虑 A 序列所有元素增加一个值 C,这将体现在最后的求和式中,即:求和式变成 $$\sum\limits_{i=0}{n-1}(a_i-b_{i+k}+c)2$$,将这个和式进行展开,可以发现这是一个关于 C 的二次函数,最值可以直接计算。于是问题转化成了如何求$$\sum\limits_{i=0}^{n-1}a_ib_{i+k}$$的最小值。上述形式的卷积被称作循环卷积,即:b 的下标取值范围为 \([0,2n-1]\),同时下标之差是定值,将 B 倍增之后,翻转 A 即可得到卷积的形式,最后取对应系数的最大值即可。

代码如下

#include <bits/stdc++.h>
using namespace std;
typedef complex<double> cp;
const double pi = acos(-1); int main() {
int n, m;
scanf("%d %d", &n, &m);
vector<double> x(n), y(n);
double ans = 0, delta = 0;
for (int i = 0; i < n; i++) {
scanf("%lf", &x[i]);
ans += x[i] * x[i];
}
for (int i = 0; i < n; i++) {
scanf("%lf", &y[i]);
ans += y[i] * y[i];
delta += y[i] - x[i];
}
double optimal = round(delta / n);
ans += n * optimal * optimal - 2 * delta * optimal; int tot = 1, bit = 0;
while (tot <= 3 * n) {
tot <<= 1;
++bit;
}
vector<int> rev(tot);
for (int i = 0; i < tot; i++) {
rev[i] = rev[i >> 1] >> 1 | (i & 1) << bit - 1;
}
vector<cp> f(tot), g(tot);
for (int i = 0; i < n; i++) {
f[i] = x[n - i - 1];
}
for (int i = 0; i < n; i++) {
g[i] = g[i + n] = y[i];
}
auto fft = [=](vector<cp> &v, int opt) {
for (int i = 0; i < tot; i++) {
if (i < rev[i]) {
swap(v[i], v[rev[i]]);
}
}
for (int mid = 1; mid < tot; mid <<= 1) {
cp wn(cos(pi / mid), opt * sin(pi / mid));
for (int j = 0; j < tot; j += mid << 1) {
cp w(1, 0);
for (int k = 0; k < mid; k++) {
cp xx = v[j + k], yy = w * v[j + mid + k];
v[j + k] = xx + yy, v[j + mid + k] = xx - yy;
w *= wn;
}
}
}
if (opt == -1) {
for (int i = 0; i < tot; i++) {
v[i].real(round(v[i].real() / tot));
}
}
};
fft(f, 1), fft(g, 1);
for (int i = 0; i < tot; i++) {
f[i] *= g[i];
}
fft(f, -1);
double minus = 0;
for (int i = 0; i < n; i++) {
minus = max(minus, f[n + i - 1].real());
}
ans -= 2 * minus;
printf("%.0lf\n", ans);
return 0;
}

【洛谷P3723】礼物的更多相关文章

  1. 洛谷 [P3723] 礼物

    FFT https://www.luogu.org/problemnew/solution/P3723 重点在于构造卷积的形式 #include <iostream> #include & ...

  2. 洛谷P3723 礼物

    以前看到过,但是搞不倒.知道了算法之后就好搞了. 题意:给定两个长为n的序列,你可以把某个序列全部加上某个数c,变成循环同构序列. 求你操作后的min∑(ai - bi)² 解: 设加上的数为c,那么 ...

  3. 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告

    P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...

  4. 洛谷P3723 [AH2017/HNOI2017]礼物(FFT)

    传送门 首先,两个数同时增加自然数值相当于只有其中一个数增加(此增加量可以小于0) 我们令$x$为当前的增加量,${a},{b}$分别为旋转后的两个数列,那么$$ans=\sum_{i=1}^n(a_ ...

  5. 洛谷P3723 [AH2017/HNOI2017]礼物

    吴迪说他化学会考上十分钟就想出来了,太神了%%%不过我也十分钟 但是调了一个多小时啊大草 懒得人话翻译了,自己康吧: 我的室友(真的是室友吗?)最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决 ...

  6. [bzoj4827] [洛谷P3723] [Hnoi2017] 礼物

    Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是 ...

  7. 洛谷 P1194 买礼物

    洛谷 P1194 买礼物 题目描述 又到了一年一度的明明生日了,明明想要买B样东西,巧的是,这B样东西价格都是A元. 但是,商店老板说最近有促销活动,也就是: 如果你买了第II样东西,再买第J样,那么 ...

  8. 洛谷P5364 [SNOI2017]礼物 题解

    传送门 /* 热情好客的小猴子请森林中的朋友们吃饭,他的朋友被编号为 1∼N,每个到来的朋友都会带给他一些礼物:大香蕉.其中,第一个朋友会带给他 11 个大香蕉,之后,每一个朋友到来以后,都会带给他之 ...

  9. 【洛谷 P4934】 礼物 (位运算+DP)

    题目链接 位运算+\(DP\)=状压\(DP\)?(雾 \(a\&b>=min(a,b)\)在集合的意义上就是\(a\subseteq b\) 所以对每个数的子集向子集连一条边,然后答案 ...

随机推荐

  1. ArcGISDynamicMapServiceLayer 和 ArcGISTiledMapServiceLayer 区别

    ArcGISDynamicMapServiceLayer(动态地图服务)通常用于实时显示经常变化的数据,支持控制单个图层可见性,可动态投影.但缺点是显示效果较差,整个服务出图较慢:ArcGISTile ...

  2. Libvirt Live Migration 与 Pre-Copy 实现原理

    目录 文章目录 目录 Libvirt 的 Live Migration 网络数据传输层 控制层 通过 libvirt 库实现虚拟机迁移的示例 KVM 的预拷贝(Pre-Copy)Live Migrat ...

  3. 【工具】rinetd 使用教程(linux 下的端口转发工具 )

    日期:2019-07-30 20:00:36 更新: 作者:Bay0net 介绍:使用 rinetd 来转发某端口的流量. 0x01. 安装 官网 RINETD 安装方法很简单,一条语句就 OK 了. ...

  4. Java学习之==>JDBC

    一.概述 官方解释: JDBC(Java DataBase Connectivity,java数据库连接)是一种用于执行SQL语句的 Java API,可以为多种关系型数据库提供统一访问,它由一组用 ...

  5. 容易忽略的javascript知识点的总结

    /** 对代码行进行折行 **/您可以在文本字符串中使用反斜杠对代码行进行换行.下面的例子会正确地显示:document.write("Hello \World!"); 不过,您不 ...

  6. Could not find aapt Please set the ANDROID_HOME environment variable with the Android SDK root directory path

    写case写好好哒,突然debug的时候就冒出这个错误: selenium.common.exceptions.WebDriverException: Message: An unknown serv ...

  7. GIS学习之栅格数据

    栅格数据用一个规则格网来描述与每一个格网单元位置相对应的空间现象特征的位置和取值.在概念上,空间现象的变化由格网单元值的变化来反映.地理信息系统中许多数据都用栅格格式来表示.栅格数据在许多方面是矢量数 ...

  8. python map 的用法

    map的用法 ——.我们来分析map在python的源码 class map(object): """ map(func, *iterables) --> map ...

  9. [题解][洛谷]_U75702/P5462_X龙珠_论何为字典序

    赛时嫌麻烦,没写 赛后自闭了,写了一下午 题目描述 “X龙珠”是一款益智小游戏.游戏中有 n(2|n)n(2∣n) 个编号互不相同龙珠按照给定的顺序排成一个队列,每个龙珠上面都有一个编号.每次操作时, ...

  10. Vue.js官方文档学习笔记(三)创建Vue实例

    创建Vue实例 每个 Vue 应用都是通过用 Vue 函数创建一个新的 Vue 实例开始的: var vm=new Vue({ //选项 }) Vue的设计受到了mvvm的启发 当创建一个 Vue 实 ...