问题描述

windy 有一块矩形土地,被分为 NM 块 11 的小格子。 有的格子含有障碍物。如果从格子 A 可以走到格子 B,那么两个格子的距离就为两个格子中心的欧几里德距离。如果从格子 A 不可以走到格子 B,就没有距离。 如果格子 X 和格子 Y 有公共边,并且 X 和 Y 均不含有障碍物,就可以从 X 走到 Y。 如果 windy 可以移走 T 块障碍物,求所有格子间的最大距离。 保证移走 T 块障碍物以后,至少有一个格子不含有障碍物。

输入格式

第一行包含三个整数,N M T。

接下来有 N 行,每行一个长度为 M 的字符串,'0'表示空格子,'1'表示该格子含有障碍物。

输出格式

输出包含一个浮点数,保留 6 位小数。

样例输入输出

输入输出样例 1

Input

3 3 0

001

001

110

Output

1.414214

输入输出样例 2

Input

4 3 0

001

001

011

000

Output

3.605551

输入输出样例 3

Input

3 3 1

001

001

001

Output

2.828427

数据范围

20%的数据,满足 1 <= N,M <= 30 ; 0 <= T <= 0 。

40%的数据,满足 1 <= N,M <= 30 ; 0 <= T <= 2 。

100%的数据,满足 1 <= N,M <= 30 ; 0 <= T <= 30 。

解析

可以发现,题目的重点在于最长的欧氏距离而不是删哪T个点,那么只要求出两个相距最远的点使其之间的路径最少经过的障碍点的数量小于T即可。接下来的问题是如何求出两点之间最少经过的障碍点。联想到最短路,对每个点跑一边Dijkstra即可。

代码

#include <iostream>
#include <cstdio>
#include <queue>
#include <cstring>
#include <cmath>
#include <iomanip>
#define N 32
#define M 902
using namespace std;
int head[M],ver[M*4],nxt[M*4],edge[M*4],ll;
int dx[4]={1,-1,0,0},dy[4]={0,0,1,-1};
char c[N];
int n,m,t,i,j,k,l,a[N][N],f[M][M];
bool vis[M];
void insert(int x,int y,int z)
{
ll++;
ver[ll]=y;
edge[ll]=z;
nxt[ll]=head[x];
head[x]=ll;
}
bool in(int x,int y)
{
return x<=n&&x>=1&&y<=m&&y>=1;
}
int get(int x,int y)
{
return (x-1)*n+y;
}
void Dijkstra(int s)
{
priority_queue<pair<int,int> > q;
memset(vis,0,sizeof(vis));
q.push(make_pair(0,s));
while(!q.empty()){
int x=q.top().second;
q.pop();
if(vis[x]) continue;
vis[x]=1;
for(int i=head[x];i;i=nxt[i]){
int y=ver[i];
if(f[s][y]>f[s][x]+edge[i]){
f[s][y]=f[s][x]+edge[i];
q.push(make_pair(-f[s][y],y));
}
}
}
}
double dis(int x1,int y1,int x2,int y2)
{
return sqrt(1.0*(x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
int main()
{
memset(f,0x3f,sizeof(f));
cin>>n>>m>>t;
for(i=1;i<=n;i++){
cin>>c;
for(j=0;j<m;j++) a[i][j+1]=c[j]-'0';
}
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
for(k=0;k<4;k++){
int x=i+dx[k],y=j+dy[k];
if(in(x,y)) insert(get(i,j),get(x,y),a[x][y]);
}
}
}
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
int x=get(i,j);
f[x][x]=a[i][j];
Dijkstra(x);
}
}
double ans=0;
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
for(k=1;k<=n;k++){
for(l=1;l<=m;l++){
int x=get(i,j),y=get(k,l);
if(x!=y&&f[x][y]<=t) ans=max(ans,dis(i,j,k,l));
}
}
}
}
cout<<setprecision(6)<<fixed<<ans<<endl;
return 0;
}

[BZOJ] 最长距离的更多相关文章

  1. BZOJ 1295: [SCOI2009]最长距离 spfa

    1295: [SCOI2009]最长距离 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1295 Description windy有一块 ...

  2. bzoj 1295: [SCOI2009]最长距离

    题目链接 1295: [SCOI2009]最长距离 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1165  Solved: 619[Submit][ ...

  3. BZOJ 1295: [SCOI2009]最长距离( 最短路 )

    把障碍点看做点(边)权为1, 其他为0. 对于每个点跑spfa, 然后和它距离在T以内的就可以更新答案 ------------------------------------------------ ...

  4. bzoj 1295 最长距离 - 最短路

    Description windy有一块矩形土地,被分为 N*M 块 1*1 的小格子. 有的格子含有障碍物. 如果从格子A可以走到格子B,那么两个格子的距离就为两个格子中心的欧几里德距离. 如果从格 ...

  5. [BZOJ 1295][SCOI2009]最长距离(SPFA+暴力)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1295 分析:很巧妙的一道spfa从搜索的角度是搜索在所有1中搜索删除哪T个1,对整个图询问,这 ...

  6. 【BZOJ】1295: [SCOI2009]最长距离(spfa+暴力)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1295 咳咳..此题我不会做啊..一开始认为是多源,可是有移除物品的操作,所以不行. 此题的思想很巧妙 ...

  7. bzoj 1295: [SCOI2009]最长距离 暴力+bfs最短路

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1295 题解: 对每个点暴力跑一遍bfs,看能够到达的最远位置,这里如果有障碍物则距离为1 ...

  8. 【BZOJ 1295】 [SCOI2009]最长距离

    Description windy有一块矩形土地,被分为 N*M 块 1*1 的小格子. 有的格子含有障碍物. 如果从格子A可以走到格子B,那么两个格子的距离就为两个格子中心的欧几里德距离. 如果从格 ...

  9. bzoj 1295 1295: [SCOI2009]最长距离

    思路:对于每个点出发bfs做一次dp, dp[ i ][ j ][ k ] 表示从枚举的该点能不能经过k个障碍物到达(i , j). #include<bits/stdc++.h> #de ...

随机推荐

  1. 模拟赛DAY 2 T1江城唱晚

    [题目背景] 墙角那株海棠,是你种下的思念. 生死不能忘,高烛照容颜. 一曲江城唱晚,重忆当年坐灯前, 青衫中绣着你留下的线. ——银临<江城唱晚> [问题描述] 扶苏是个喜欢一边听古风歌 ...

  2. sqlite时间类型

    SQLite分页显示:Select * From news order by id desc Limit 10 Offset 10这篇文章是根据 SQLite 官方 WIKI 里的内容翻译,如果有什么 ...

  3. activiti 流程发起人控制

    最近做activiti流程发起人的控制,最开始的想法是新建一张表 ,通过控制流程定义id与发起人id进行控制,如果这样每次发布新的流程就必须 重新设置流程发起人,因为通过流程定义不能获取流程模型id, ...

  4. 关于 token

    用户在浏览器做一系列操作,后台服务怎么判断这些操作是来自同一个用户? 1. seesion 用户登录后,后台生成 sessionid 返回给浏览器,浏览器的每次请求带上 sessionid,后台关联 ...

  5. OpenStack 多节点纳管 vCenter 5.5

    目录 目录 测试环境 Nova 配置OpenStack 纳管 vCenter 虚拟机 Glance 配置OpenStack 纳管 vCenter 镜像 Cinder 配置OpenStack 纳管 vC ...

  6. 阶段1 语言基础+高级_1-3-Java语言高级_06-File类与IO流_06 Properties集合_2_Properties集合中的方法store

    第一行是注释,第二行是时间,时间是自动加的 使用FileOutputStream. 写入中文会乱码

  7. IDEA基本设置和快捷键大全

    # IDEA基本设置 ## 设置编码格式 1. Configure - Settings - Editor - File Encodings 2. 将三个编码全部设置为UTF-8 ## 启用Ctrl+ ...

  8. 取消a或input标签聚焦后出现虚线框

    1:在a标签里加入js控制,当a标签被聚焦时,强制取消焦点,这时候a标签自然不会有虚线框. <a href="#" onfocus="this.blur();&qu ...

  9. 20191103 《Spring5高级编程》笔记-第4章

    第4章 详述Spring配置和Spring Boot 4.2 管理bean生命周期 通常,有两个生命周期事件与bean特别相关:post-initialization和pre-destruction. ...

  10. JavaSE编码试题强化练习6

    1.写出选择排序的代码实现,对一个int数组进行排序 public class TestSelectSort { public static void main(String[] args) { in ...