Monte Carlo Policy Evaluation
Model-Based and Model-Free
In the previous several posts, we mainly talked about Model-Based Reinforcement Learning. The biggest assumption for Model-Based learning is the whole knowledge of the environment is given, but it is unrealistic in real life or even video games. I do believe unknown makes life (game) interesting. Personally, everytime I know what will happen in a game, I get rid of it! So, people like playing games with some uncertainties. That is what Model-Free Reinforcement Learning does: lean the unknown environment, and then come up with the best policy.
Two Task for Model-Free Learning
For Model-Based Learning,we have two tasks: Evaluation and Control. We use Dynamic Programming to evaluate a policy, while two algorithms called Policy Iteration and Value Iteration are used to extract the optimal policy. In Model-Free Learning, we have the same two tasks:
Evaluation: we need to estimate State-Value functions for every state, although Transition Matrices and Reward Function are not given.
Control: we need to find the best policy to solve the interesting game.
Monte Carlo Method in Daily Life
One of the algorithms for Evaluation is Monte Carlo Method. Probably the superior name 'Monte Carlo' is scaring, but you would feel comfortable while following my example below.
Assume our task is traveling from London to Toronto, and the policy is 'random walk'. we define travel distance and time as rewards. There are cities, towns, even villages on the map on which agents would randomly draw diverse trajectories from London to Toronto. Even it is possible that an agent arrives and departs some places more than once. But finally every agent will complete an episode when it arrives at Toronto, and then we can review paths, learning experience from trials.
Finally, we will know goodnesses of being in every place on the map. Mississauga is a very good state for our task, but the state Owen Sound is terrible. The reason why we can get this conclusion is: states closed to the final state usually have great State-Value functions, because they tend to win the game soon. Episodes in our example that get to Mississauga have great probabilities getting to Toronto soon, so the Expectation of their State-Value functions is also high. On the other hand, the expectation of Owen Sound's State-Value function pretty low. That's why most people choose 401 Highway passing Mississauga to Toronto, but nobody go Owen Sound first. It's from daily life experience.
Definition of Monte Carlo Method
1. First-Visit Monte Carlo Evaluation Algorithm
Initialize:
a. π is the policy that needs to be evaluated;
b. V(St) is an arbitary State-Value function;
c. Counter matrix N(St), to record the appearance time of each state;
Repeat in loops:
a. Generate an episode from π
b. For each state s appearing in the episode for the first time, calculate new State-Value function V(St)
To avoid storing all returns or the sum of returns for all episodes, we transform the equation a little bit when we calculate the new State-Value function:
And we get the equation for updating State-Value function:
it can also be rewritten to:
2. Every-Visit Monte Carlo Evaluation Algorithm
Initialize:
a. π is the policy that needs to be evaluated;
b. V(St) is an arbitary State-Value function;
c. Counter matrix N(St), to record the appearance time of each state;
Repeat in loops:
a. Generate an episode from π
b. For each state s appearing in the episode for every time, calculate new State-Value function V(St)
Population vs. Sample
A online video from MIT(Here we go) reminds me the idea of Population and Sample from Statistics. Population is quite like the whole knowledge on Model-Based learning, but getting samples is easier and more realistic in real life. Monte Carlo is similar to using the distribution of samples to do inference of the population.
Monte Carlo Policy Evaluation的更多相关文章
- 增强学习(四) ----- 蒙特卡罗方法(Monte Carlo Methods)
1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基 ...
- 蒙特卡罗方法、蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)初探
1. 蒙特卡罗方法(Monte Carlo method) 0x1:从布丰投针实验说起 - 只要实验次数够多,我就能直到上帝的意图 18世纪,布丰提出以下问题:设我们有一个以平行且等距木纹铺成的地板( ...
- Monte Carlo Control
Problem of State-Value Function Similar as Policy Iteration in Model-Based Learning, Generalized Pol ...
- Introduction to Monte Carlo Tree Search (蒙特卡罗搜索树简介)
Introduction to Monte Carlo Tree Search (蒙特卡罗搜索树简介) 部分翻译自“Monte Carlo Tree Search and Its Applicati ...
- 强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods)
强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S ...
- Programming a Hearthstone agent using Monte Carlo Tree Search(chapter one)
Markus Heikki AnderssonHåkon HelgesenHesselberg Master of Science in Computer Science Submission dat ...
- Ⅳ Monte Carlo Methods
Dictum: Nutrition books in the world. There is no book in life, there is no sunlight; wisdom withou ...
- Monte Carlo方法简介(转载)
Monte Carlo方法简介(转载) 今天向大家介绍一下我现在主要做的这个东东. Monte Carlo方法又称为随机抽样技巧或统计实验方法,属于计算数学的一个分支,它是在上世纪四十年代 ...
- PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00 今天的主要内容:Markov Chain Monte Carlo,M ...
随机推荐
- Navicat连接阿里云服务器MSQL数据库
新买了台服务器Navicat老是连接不上数据库,查找一圈找到解决办法.So Easy 一.shell远程登录,进入数据库 mysql -uroot -p 二.输入以下命令进行授权: GRANT ALL ...
- 2019 计蒜之道 复赛 D. “星云系统”(单调栈)
VIPKID 是在线少儿英语教育平台,网络稳定是在线教育课程质量的红线,VIPKID 为此推出了全球最稳定的教育网络系统 -- "星云系统".星云系统目前建立了覆盖全球 3535 ...
- ssh修改超时自动登出时间的方法
echo $TMOUT 查看当前服务器登出时间,如果没有输出表示不会登出 1.修改:vim ~/.bash_profile 2.设置TMOUT值 TMOUT=600 #表示10分钟之后自动登出 TMO ...
- Node Buffer 利用 slice + indexOf 生成 split 方法
demo let buf = Buffer.from('你你我们我你们'); Buffer.prototype.split = function (seq) { let arr=[]; let len ...
- 7.docker私有registry
一.Docker Registry分类 Registry用于保存docker镜像,包括镜像的层次结构和元数据.都是基于https或者http工作的. 用户可自建Registry,也可使用官方的Dock ...
- classloader加载class的流程及自定义ClassLoader
java应用环境中不同的class分别由不同的ClassLoader负责加载.一个jvm中默认的classloader有Bootstrap ClassLoader.Extension ClassLoa ...
- 与Swing的初见
---------------------------参考菜鸟教程的swing课程学习-------------------- Swing 是一个为Java设计的GUI工具包. Swing是JAVA基 ...
- win10如何设置软件开机启动
想要实现应用程序在所有的用户登录系统后都能自动启动,就把该应用程序的快捷方式放到“系统启动文件夹”里C:\ProgramData\Microsoft\Windows\Start Menu\Progra ...
- LTM_本地流量管理(二)
会话保持 首先要熟悉两个概念:连接connect和会话session 连接:在四层负载均衡中,连接是最小元素. l 源端口:客户端随机产生的端口. l 源地址:发起请求的源IP地址. l 目的端 ...
- HTML5的新特性:范围样式,又叫做<style scoped>
Chromium 最近实现了一个HTML5的新特性:范围样式,又叫做<style scoped> .开发者可以通过为根元素设定一个添加了scoped属性的style标签,来限制样式只作用于 ...