Model-Based and Model-Free

In the previous several posts, we mainly talked about Model-Based Reinforcement Learning. The biggest assumption for Model-Based learning is the whole knowledge of the environment is given, but it is unrealistic in real life or even video games. I do believe unknown makes life (game) interesting. Personally, everytime I know what will happen in a game, I get rid of it! So, people like playing games with some uncertainties. That is what Model-Free Reinforcement Learning does: lean the unknown environment, and then come up with the best policy.

Two Task for Model-Free Learning

For Model-Based Learning,we have two tasks: Evaluation and Control. We use Dynamic Programming to evaluate a policy, while two algorithms called Policy Iteration and Value Iteration are used to extract the optimal policy. In Model-Free Learning, we have the same two tasks:

Evaluation: we need to estimate State-Value functions for every state, although Transition Matrices and Reward Function are not given.

Control: we need to find the best policy to solve the interesting game.

Monte Carlo Method in Daily Life

One of the algorithms for Evaluation is Monte Carlo Method. Probably the superior name 'Monte Carlo' is scaring, but you would feel comfortable while following my example below.

Assume our task is traveling from London to Toronto, and the policy is 'random walk'. we define travel distance and time as rewards. There are cities, towns, even villages on the map on which agents would randomly draw diverse trajectories from London to Toronto. Even it is possible that an agent arrives and departs some places more than once. But finally every agent will complete an episode when it arrives at Toronto, and then we can review paths, learning experience from trials.

Finally, we will know goodnesses of being in every place on the map. Mississauga is a very good state for our task, but the state Owen Sound is terrible. The reason why we can get this conclusion is: states closed to the final state usually have great State-Value functions, because they tend to win the game soon. Episodes in our example that get to Mississauga have great probabilities getting to Toronto soon, so the Expectation of their State-Value functions is also high. On the other hand, the expectation of Owen Sound's State-Value function pretty low. That's why most people choose 401 Highway passing Mississauga to Toronto, but nobody go Owen Sound first. It's from daily life experience.

Definition of Monte Carlo Method

1. First-Visit Monte Carlo Evaluation Algorithm

Initialize:

a. π is the policy that needs to be evaluated;

b. V(St) is an arbitary State-Value function;

c. Counter matrix N(St), to record the appearance time of each state;

Repeat in loops:

a. Generate an episode from π

b. For each state s appearing in the episode for the first time, calculate new State-Value function V(St)

To avoid storing all returns or the sum of returns for all episodes, we transform the equation a little bit when we calculate the new State-Value function:

And we get the equation for updating State-Value function:

it can also be rewritten to:

2. Every-Visit Monte Carlo Evaluation Algorithm

Initialize:

a. π is the policy that needs to be evaluated;

b. V(St) is an arbitary State-Value function;

c. Counter matrix N(St), to record the appearance time of each state;

Repeat in loops:

a. Generate an episode from π

b. For each state s appearing in the episode for every time, calculate new State-Value function V(St)

Population vs. Sample

A online video from MIT(Here we go) reminds me the idea of Population and Sample from Statistics. Population is quite like the whole knowledge on Model-Based learning, but getting samples is easier and more realistic in real life. Monte Carlo is similar to using the distribution of samples to do inference of the population.

Monte Carlo Policy Evaluation的更多相关文章

  1. 增强学习(四) ----- 蒙特卡罗方法(Monte Carlo Methods)

    1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基 ...

  2. 蒙特卡罗方法、蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)初探

    1. 蒙特卡罗方法(Monte Carlo method) 0x1:从布丰投针实验说起 - 只要实验次数够多,我就能直到上帝的意图 18世纪,布丰提出以下问题:设我们有一个以平行且等距木纹铺成的地板( ...

  3. Monte Carlo Control

    Problem of State-Value Function Similar as Policy Iteration in Model-Based Learning, Generalized Pol ...

  4. Introduction to Monte Carlo Tree Search (蒙特卡罗搜索树简介)

    Introduction to Monte Carlo Tree Search (蒙特卡罗搜索树简介)  部分翻译自“Monte Carlo Tree Search and Its Applicati ...

  5. 强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods)

    强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S ...

  6. Programming a Hearthstone agent using Monte Carlo Tree Search(chapter one)

    Markus Heikki AnderssonHåkon HelgesenHesselberg Master of Science in Computer Science Submission dat ...

  7. Ⅳ Monte Carlo Methods

    Dictum:  Nutrition books in the world. There is no book in life, there is no sunlight; wisdom withou ...

  8. Monte Carlo方法简介(转载)

    Monte Carlo方法简介(转载)       今天向大家介绍一下我现在主要做的这个东东. Monte Carlo方法又称为随机抽样技巧或统计实验方法,属于计算数学的一个分支,它是在上世纪四十年代 ...

  9. PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,M ...

随机推荐

  1. 在Linux环境下部署MySql服务

    之前有下载部署过几次,但是每次都会踩一些坑.特此记录在liunx下部署安装mysql的基本步骤: 1.卸载老版本的mysql find / -name mysql|xargs rm -rf     查 ...

  2. python面向对象--类的装饰器

    # def deco(obj): # print("=====",obj) # obj.x=1 # return obj # @deco#===> test = deco(t ...

  3. 分页控件SSTab

    一.分页控件SSTab概述1.作用:采用分页形式查询或编辑数据表中数据.2.添加到控件箱菜单命令:工程 | 部件,选择:Microsoft Tabbed Dialog Control 6.0 (SP6 ...

  4. Ansible笔记(2)--配置清单

    一.Ansible Inventory配置及详解 Inventory是ansible管理主机信息的配置文件,默认存放在/etc/ansible/hosts.在使用时通过 -i 或 --inventor ...

  5. java并发学习--第九章 指令重排序

    一.happns-before happns-before是学习指令重排序前的一个必须了解的知识点,他的作用主要是就是用来判断代码的执行顺序. 1.定义 happens-before是用来指定两个操作 ...

  6. Pycharm中Matplotlib图像不在弹出独立的显示窗口

    File | Settings | Tools | Python Scientific | Show plots in toolwindow 如图, 取消勾选此时,在执行就会在独立的窗口中弹出Matp ...

  7. 在 LaTeX 中同步缩放 TikZ 与其中的 node

    PGF/TikZ 是 Till Tantau 开发的基于 TeX 的绘图引擎.因其可以直接在 LaTeX 文稿中通过代码绘制向量图,所以是目前流行的 LaTeX 绘图解决方案之一. 在 tikzpic ...

  8. linux运维、架构之路-tomcat服务

    一.tomcat介绍       Tomcat服务器是一个免费的开放源代码的Web应用服务器,即能处理静态页面,又能处理动态的java页面 二.JDK安装 jdk是java开发工具包,也可以叫java ...

  9. Linux GDB 程序调试工具使用详解

    转自    http://www.codeceo.com/article/linux-gdb-tools.html 整理的挺全的 GDB概述 GDB是GNU开源组织发布的一个强大的UNIX下的程序调试 ...

  10. Python_018( isinstance,issubclass详解)

    1.isinstance() 1)class A:pass class B:pass b = B() print(isinstance(b,B) #True  #isinstance(obj,type ...