CKPT->pb

Demo

解析

tensor name 和 node name 的区别

Pb 的恢复

CKPT->pb

tensorflow的模型保存有两种形式:

1. ckpt:可以恢复图和变量,继续做训练

2. pb : 将图序列化,变量成为固定的值,,只可以做inference;不能继续训练

Demo

  1 def freeze_graph(input_checkpoint,output_graph):
2
3 '''
4 :param input_checkpoint:
5 :param output_graph: PB模型保存路径
6 :return
7 void
8 '''
9
10 # checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
11 # input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径
12
13 # 指定输出的节点名称,该节点名称必须是原模型中存在的节点
14 output_node_names = "InceptionV3/Logits/SpatialSqueeze" # 如果是多个输出节点,使用 ‘,’号隔开
15
16 ############################ Step1: 从ckpt中恢复图: #############################################
17 saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True)
18 graph = tf.get_default_graph() # 获得默认的图, 可以省略
19 input_graph_def = graph.as_graph_def() # 返回一个序列化的图代表当前的图,可以省略
20
21 with tf.Session() as sess: # 会使用默认的图 作为当前的图
22 saver.restore(sess, input_checkpoint) #恢复图并得到数据
23
24 ######################## Step2: 创建持久化对象,指定sess,图、以及输出的序列化节点信息 ##############
25 output_graph_def = graph_util.convert_variables_to_constants( # 模型持久化,将变量值固定
26 sess=sess,
27 input_graph_def=input_graph_def,# 等于:sess.graph_def
28 output_node_names=output_node_names.split(","))# 如果有多个输出节点,以逗号隔开
29 ######################### Step3: 模型持久化 #######################################################
30 with tf.gfile.GFile(output_graph, "wb") as f: #保存模型
31 f.write(output_graph_def.SerializeToString()) #序列化输出
32 print("%d ops in the final graph." % len(output_graph_def.node)) #得到当前图有几个操作节点
33 # for op in graph.get_operations():
34
35 # print(op.name, op.values())
36
37
38 ########################### 调用方式 ################################
39 # 输入ckpt模型路径
40 input_checkpoint='models/model.ckpt-10000'
41 # 输出pb模型的路径
42 out_pb_path="models/pb/frozen_model.pb"
43 # 调用freeze_graph将ckpt转为pb
44 freeze_graph(input_checkpoint,out_pb_path)解析函数freeze_graph中,最重要的就是要确定“指定输出的节点名称”,这个节点名称必须是原模型中存在的节点,对于freeze操作,我们需要定义输出结点的名字。freeze的时候就只把输出该结点所需要的子图都固化下来,其他无关的就舍弃掉。因为我们freeze模型的目的是接下来做预测。所以,output_node_names一般是网络模型最后一层输出的节点名称,或者说就是我们预测的目标。在保存pb的时候,通过convert_variables_to_constants函数来指定需要固化的节点名称; tensor name 和 node name 的区别node name 是 图 的节点,里面包含了很多操作和tensortensor 是 node 里面的一个组成部分;以input 为例,“input:0”是张量的名称,而"input"表示的是节点的名称PS:注意张量的名称,即为:节点名称+“:”+“id号”,如"input:0"

Tensorflow Learning1 模型的保存和恢复的更多相关文章

  1. TensorFlow笔记-模型的保存,恢复,实现线性回归

    模型的保存 tf.train.Saver(var_list=None,max_to_keep=5) •var_list:指定将要保存和还原的变量.它可以作为一个 dict或一个列表传递. •max_t ...

  2. 第六节,TensorFlow编程基础案例-保存和恢复模型(中)

    在我们使用TensorFlow的时候,有时候需要训练一个比较复杂的网络,比如后面的AlexNet,ResNet,GoogleNet等等,由于训练这些网络花费的时间比较长,因此我们需要保存模型的参数. ...

  3. tensorflow模型的保存与恢复

    1.tensorflow中模型的保存 创建tf.train.saver,使用saver进行保存: saver = tf.train.Saver() saver.save(sess, './traine ...

  4. [翻译] Tensorflow模型的保存与恢复

    翻译自:http://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/ ...

  5. tensorflow 1.0 学习:模型的保存与恢复(Saver)

    将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf. ...

  6. tensorflow 1.0 学习:模型的保存与恢复

    将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf. ...

  7. AI - TensorFlow - 示例05:保存和恢复模型

    保存和恢复模型(Save and restore models) 官网示例:https://www.tensorflow.org/tutorials/keras/save_and_restore_mo ...

  8. tensorflow模型的保存与恢复,以及ckpt到pb的转化

    转自 https://www.cnblogs.com/zerotoinfinity/p/10242849.html 一.模型的保存 使用tensorflow训练模型的过程中,需要适时对模型进行保存,以 ...

  9. Python之TensorFlow的模型训练保存与加载-3

    一.TensorFlow的模型保存和加载,使我们在训练和使用时的一种常用方式.我们把训练好的模型通过二次加载训练,或者独立加载模型训练.这基本上都是比较常用的方式. 二.模型的保存与加载类型有2种 1 ...

随机推荐

  1. oracle partition 分区

    --范围分区create table person( id int, name varchar2(20), birth date, sex char(2))partition by range (bi ...

  2. 【NOIP2016提高组day2】愤怒的小鸟

    分析 Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 (0, 0) 处,每次Kiana可以用它向第一象限发射一只红色的小鸟, 小鸟们的飞行轨迹均 ...

  3. 【NOIP2016提高A组模拟10.15】打膈膜

    题目 分析 贪心, 先将怪物按生命值从小到大排序(显然按这个顺序打是最优的) 枚举可以发对少次群体攻击, 首先将所有的群体攻击发出去, 然后一个一个怪物打,当当前怪物生命值大于2,如果还有魔法值就放重 ...

  4. vue使用 router-link 时点击不能跳转问题

    本来一直都是使用<router-link to='/CouplePackage'>产品</router-link>这样的静态方法, 但是突然今天发现这个方法好像有点问题,在某些 ...

  5. BZOJ 4289: PA2012 Tax Dijkstra + 查分

    Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...

  6. Elastic-Job快速入门

    1 Elastic-Job快速入门1.1 环境搭建1.1.1.版本要求JDK要求1.7及以上版本Maven要求3.0.4及以上版本zookeeper要求采用3.4.6及以上版本1.1.2.Zookee ...

  7. Python模块之-OS模块

    一.os模块概述 Python os模块包含普遍的操作系统功能.如果你希望你的程序能够与平台无关的话,这个模块是尤为重要的.(一语中的) 二.常用方法 1.os.name 输出字符串指示正在使用的平台 ...

  8. 更好的构建 Node 服务的工具

    更好的构建 Node 服务的工具 无论前端项目在打包后都发送给后台, 有时候自己想看看效果在运行 npm run build 后只是看到一个 build 文件夹,但是直接打开是无法浏览,因此需要开启一 ...

  9. 拦截器中,request中getReader()和getInputStream()只能调用一次,构建可重复读取inputStream的request.

    由于 request中getReader()和getInputStream()只能调用一次 在项目中,可能会出现需要针对接口参数进行校验等问题. 因此,针对这问题,给出一下解决方案 实现方法:先将Re ...

  10. [design pattern](4) SImple Factory

    前言 本博客主要介绍简单工厂模式(Simple Factory),简单工厂模式是创建型模式的一员,也是我们平时coding用到的比较多的一个模式了. 思考题 首先,让我们思考以下的需求: 博主,突然很 ...