Tensorflow Learning1 模型的保存和恢复
CKPT->pb
tensorflow的模型保存有两种形式:
1. ckpt:可以恢复图和变量,继续做训练
2. pb : 将图序列化,变量成为固定的值,,只可以做inference;不能继续训练
Demo
1 def freeze_graph(input_checkpoint,output_graph):
2
3 '''
4 :param input_checkpoint:
5 :param output_graph: PB模型保存路径
6 :return
7 void
8 '''
9
10 # checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
11 # input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径
12
13 # 指定输出的节点名称,该节点名称必须是原模型中存在的节点
14 output_node_names = "InceptionV3/Logits/SpatialSqueeze" # 如果是多个输出节点,使用 ‘,’号隔开
15
16 ############################ Step1: 从ckpt中恢复图: #############################################
17 saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True)
18 graph = tf.get_default_graph() # 获得默认的图, 可以省略
19 input_graph_def = graph.as_graph_def() # 返回一个序列化的图代表当前的图,可以省略
20
21 with tf.Session() as sess: # 会使用默认的图 作为当前的图
22 saver.restore(sess, input_checkpoint) #恢复图并得到数据
23
24 ######################## Step2: 创建持久化对象,指定sess,图、以及输出的序列化节点信息 ##############
25 output_graph_def = graph_util.convert_variables_to_constants( # 模型持久化,将变量值固定
26 sess=sess,
27 input_graph_def=input_graph_def,# 等于:sess.graph_def
28 output_node_names=output_node_names.split(","))# 如果有多个输出节点,以逗号隔开
29 ######################### Step3: 模型持久化 #######################################################
30 with tf.gfile.GFile(output_graph, "wb") as f: #保存模型
31 f.write(output_graph_def.SerializeToString()) #序列化输出
32 print("%d ops in the final graph." % len(output_graph_def.node)) #得到当前图有几个操作节点
33 # for op in graph.get_operations():
34
35 # print(op.name, op.values())
36
37
38 ########################### 调用方式 ################################
39 # 输入ckpt模型路径
40 input_checkpoint='models/model.ckpt-10000'
41 # 输出pb模型的路径
42 out_pb_path="models/pb/frozen_model.pb"
43 # 调用freeze_graph将ckpt转为pb
44 freeze_graph(input_checkpoint,out_pb_path)解析函数freeze_graph中,最重要的就是要确定“指定输出的节点名称”,这个节点名称必须是原模型中存在的节点,对于freeze操作,我们需要定义输出结点的名字。freeze的时候就只把输出该结点所需要的子图都固化下来,其他无关的就舍弃掉。因为我们freeze模型的目的是接下来做预测。所以,output_node_names一般是网络模型最后一层输出的节点名称,或者说就是我们预测的目标。在保存pb的时候,通过convert_variables_to_constants函数来指定需要固化的节点名称; tensor name 和 node name 的区别node name 是 图 的节点,里面包含了很多操作和tensortensor 是 node 里面的一个组成部分;以input 为例,“input:0”是张量的名称,而"input"表示的是节点的名称PS:注意张量的名称,即为:节点名称+“:”+“id号”,如"input:0"
Tensorflow Learning1 模型的保存和恢复的更多相关文章
- TensorFlow笔记-模型的保存,恢复,实现线性回归
模型的保存 tf.train.Saver(var_list=None,max_to_keep=5) •var_list:指定将要保存和还原的变量.它可以作为一个 dict或一个列表传递. •max_t ...
- 第六节,TensorFlow编程基础案例-保存和恢复模型(中)
在我们使用TensorFlow的时候,有时候需要训练一个比较复杂的网络,比如后面的AlexNet,ResNet,GoogleNet等等,由于训练这些网络花费的时间比较长,因此我们需要保存模型的参数. ...
- tensorflow模型的保存与恢复
1.tensorflow中模型的保存 创建tf.train.saver,使用saver进行保存: saver = tf.train.Saver() saver.save(sess, './traine ...
- [翻译] Tensorflow模型的保存与恢复
翻译自:http://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/ ...
- tensorflow 1.0 学习:模型的保存与恢复(Saver)
将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf. ...
- tensorflow 1.0 学习:模型的保存与恢复
将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf. ...
- AI - TensorFlow - 示例05:保存和恢复模型
保存和恢复模型(Save and restore models) 官网示例:https://www.tensorflow.org/tutorials/keras/save_and_restore_mo ...
- tensorflow模型的保存与恢复,以及ckpt到pb的转化
转自 https://www.cnblogs.com/zerotoinfinity/p/10242849.html 一.模型的保存 使用tensorflow训练模型的过程中,需要适时对模型进行保存,以 ...
- Python之TensorFlow的模型训练保存与加载-3
一.TensorFlow的模型保存和加载,使我们在训练和使用时的一种常用方式.我们把训练好的模型通过二次加载训练,或者独立加载模型训练.这基本上都是比较常用的方式. 二.模型的保存与加载类型有2种 1 ...
随机推荐
- 单调队列优化DP || [SCOI2010]股票交易 || BZOJ 1855 || Luogu P2569
题面:P2569 [SCOI2010]股票交易 题解: F[i][j]表示前i天,目前手中有j股的最大收入Case 1:第i天是第一次购买股票F[i][j]=-j*AP[i]; (1<=j< ...
- java 集合之ArrayList、Vector、LinkedList、CopyOnWriteArrayList
ArrayList 线程不安全. 底层Object[]数组实现,用transient关键字修饰,防止序列化,然后重写了readObject和writeObject方法,为了提高传输效率. 插入时会判断 ...
- java阻塞队列得实现
阻塞队列与普通队列的不同在于.当队列是空的时候,从队列中获取元素的操作将会被阻塞,或者当队列满时,往队列里面添加元素将会被阻塞.试图从空的阻塞队列中获取元素的线程将会被阻塞,直到其他的线程往空的队列插 ...
- Charles在windows上抓取本地python的 request请求
首先打开charles,在Proxy中打开Windows Proxy,这样才能抓取本地请求 python代码中报错Caused by SSLError(SSLError(1, '[SSL: CERTI ...
- hibernate中save()、get()、load()、update()、saveorupdate()、merge()等方法
1.save()方法 直接传个user对象 session.save(user); 2.get()方法和load()方法 get(): 传id session.get(UserInfo. ...
- 【织梦手机端仿站】和PC一个后台
卸载插件,织梦默认带手机站,无需复杂使用插件以后不方便升级.织梦2015年6月8日更新后,就添加了很多针对手机移动端的设计,最大的设计就是添加了生成二维码的织梦标签和织梦手机模板功能,织梦更新后,默认 ...
- Linux 环境下 gzip 的加解密命令
1.加密 [root@127-0-0-1 nginx]# gzip -v access.log-20190328 access.log-20190328: 95.8% -- replaced with ...
- Mysql 连接路径 url 参数解析
1.mysql - url 参数解析 url:jdbc:mysql://127.0.0.1:3306/user?useUnicode=true&characterEncoding=utf8 u ...
- MySQL教程-MyISAM和InnoDB的区别
MySQL的表类型MyISAM和InnoDB之间的最大区别是,InnoDB的支持事务.兄弟连教育( )来给大家做个对比: InnoDB支持一些新的功能:交易,行级锁,外键 InnoDB是高容量,高性能 ...
- EasyUI combobox下拉框添加水平滚动条和垂直滚动条
在EasyUI中combobox组件设置滚动条: 1.垂直滚动条:设置panelHeight属性,默认200,组件的数据过多滚动条自动出现,设置auto,则不出现滚动条. 2.水平滚动条:水平滚动条在 ...