欧拉函数&欧拉定理&降幂 总结
欧拉函数&欧拉定理&降幂 总结
标签:数学方法——数论
阅读体验:https://zybuluo.com/Junlier/note/1300214
这年头不总结一下是真的容易忘,老了老了,要AFO了。。。
欧拉函数
介绍
欧拉函数写做\(\varphi[x]\),表示\(0\)到\(x\)中与\(x\)互质的数的个数
那么我们会有引理(对于素数\(p\)):
\begin{aligned}
\varphi[p]=p-1\ --------------①\\
\varphi[i*p]=p*\varphi[i]\ \ \ \ \ \ \ \ \ \ \ \ (i\bmod p==0)---②\\
\varphi[i*p]=(p-1)*\varphi[i]\ \ \ \ \ (i\bmod p\ne0)---③
\end{aligned}
\right.\]
据说还有一个总的公式:\(\varphi[n]=n*\prod(1-\dfrac{1}{a_i})\) (\(a_i\)是\(n\)的质因子)
怎么求
线性筛所有欧拉函数
我们可以用线性筛素数的方法同时把欧拉函数筛出来(根据上面的引理)
不会线性筛素数?那你把这个板子背了就会了。。。笑哭.\(jpg\)
(去掉和\(phi\)数组有关的就是线性筛素数了)
背板子吧,其实也容易理解
void Prepare_Phi()
{
phi[1]=1;
for(int i=2;i<=M;++i)
{
if(!phi[i])pri[++tot]=i,phi[i]=i-1;//①
for(int j=1;j<=tot;++j)
{
if(i*pri[j]>M)break;
if(!(i%pri[j]))
{
phi[i*pri[j]]=phi[i]*pri[j];//②
break;
}else phi[i*pri[j]]=phi[i]*(pri[j]-1);//③
}
}
}
根号求单个欧拉函数
il lst euler(rg lst x)
{
rg lst ans=x,tp=sqrt(x);
for(lst i=2;i<=tp;++i)
if(x%i==0)
{
ans=ans-ans/i;
while(x%i==0)x/=i;
}
if(x>1)ans=ans-ans/x;
return ans;
}
欧拉定理
有了欧拉函数做坚实的后盾
讲欧拉定理就不用扯那些七里八里的东西了
一个公式:当\(a,n\)互质时$$
a^{\varphi(n)}\equiv1(\bmod\ n)
如果$a,n$互质,那么有 $\ a^{\varphi(n)}\%n==1$
也就是 $ a^{\varphi(n)}$ 与 $n$ 互质
**最有用的**? $a^b\equiv a^{b\%\varphi(n)}(\bmod\ n)$
PS:结合后面的扩展欧拉定理可以用作**降幂**,后面讲
## 扩展欧拉定理
嗯,一般扩展不就是把互质推广到所有情况嘛
行,如果上面那个式子里面$a,n$不互质了
$$a^b\equiv \left\{
\begin{aligned}
a^b (\bmod\ n)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ b<\varphi(n)\\
a^{b\%\varphi(n)+varphi(n)}(\bmod\ n)\ \ b\geq\varphi(n)
\end{aligned}
\right.\]
降幂(应用草鸡广的)
根据上面两个定理的公式结合起来
\begin{aligned}
a^{b\%\varphi(n)}(\bmod\ n)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n,a互质\\
a^b (\bmod\ n)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ b<\varphi(n)\\
a^{b\%\varphi(n)+\varphi(n)}(\bmod\ n)\ \ \ \ \ \ \ \ b\geq\varphi(n)
\end{aligned}
\right.$$~~其实我们完全可以不用用到第一个~~
思考一下
是不是对于一个问题求$a^b (\bmod\ n)$
可以直接根据右边的条件把式子转换成上面三个中的一个
$yep$降幂成功
给个例题吧:[洛谷P4139 上帝与集合的正确用法](https://www.luogu.org/problemnew/show/P4139)
代码你要吗?~~不要我也给你,虽然丑~~
```
#include<bits/stdc++.h>
#define lst long long
#define ldb double
#define N 10000050
#define M 10000000
using namespace std;
const int Inf=1e9;
int read()
{
int s=0,m=0;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')m=1;ch=getchar();}
while( isdigit(ch))s=(s<<3)+(s<<1)+(ch^48),ch=getchar();
return m?-s:s;
}
int Q,tot;
int phi[N],pri[N];
void Prepare_Phi()
{
phi[1]=1;
for(int i=2;i<=M;++i)
{
if(!phi[i])pri[++tot]=i,phi[i]=i-1;//①
for(int j=1;j<=tot;++j)
{
if(i*pri[j]>M)break;
if(!(i%pri[j]))
{
phi[i*pri[j]]=phi[i]*pri[j];//②
break;
}else phi[i*pri[j]]=phi[i]*(pri[j]-1);//③
}
}
}
lst qpow(lst x,lst y,lst mod)
{
lst ret=1;
while(y)
{
if(y&1)ret=ret*x%mod;
x=x*x%mod,y>>=1;
}return ret;
}
lst Solve(lst mod)
{
if(mod==1)return 0;
return qpow(2,Solve(phi[mod])+phi[mod],mod);
}
int main()
{
Prepare_Phi();
Q=read();
while(Q--)
{
int p=read();
printf("%lld\n",Solve(p));
}
return 0;
}
```
那,讲完了啊。。。你以为能讲多少。。。
~~毕竟我是个菜鸡嘛~~\]
欧拉函数&欧拉定理&降幂 总结的更多相关文章
- 欧拉函数&&欧拉定理
定义和简单性质 欧拉函数在OI中是个非常重要的东西,不知道的话会吃大亏的. 欧拉函数用希腊字母φ表示,φ(N)表示N的欧拉函数. 对φ(N)的值,我们可以通俗地理解为小于N且与N互质的数的个数(包含1 ...
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- Super A^B mod C (快速幂+欧拉函数+欧拉定理)
题目链接:http://acm.fzu.edu.cn/problem.php?pid=1759 题目:Problem Description Given A,B,C, You should quick ...
- POJ3696【欧拉函数+欧拉定理】
题意: 求最小T,满足L的倍数且都由8组成,求长度: 思路: 很强势的福利:点 图片拿出去食用更优 //#include<bits/stdc++.h> #include<cstdio ...
- FZU 1759 欧拉函数 降幂公式
Description Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000 ...
- 2^x mod n = 1(欧拉定理,欧拉函数,快速幂乘)
2^x mod n = 1 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- HDU 3221 矩阵快速幂+欧拉函数+降幂公式降幂
装载自:http://www.cnblogs.com/183zyz/archive/2012/05/11/2495401.html 题目让求一个函数调用了多少次.公式比较好推.f[n] = f[n-1 ...
- 数论的欧拉定理证明 & 欧拉函数公式(转载)
欧拉函数 :欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) . 完全余数集合:定义小于 n 且和 n 互质的数 ...
- BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3860 Solved: 1751[Submit][Status][Discuss] Descripti ...
随机推荐
- CH0805 防线 (二分值域,前缀和,特殊性质)
$ CH~0805~ $ 防线 (二分值域,前缀和,特殊性质) $ solution: $ 注意博主所给题面的输出和原题有些不同 这道题当时想了很久很久,就是想不到怎么写.果然还是太 $ vegeta ...
- 唤醒 App
一.Deep Link 1.什么是 Deep Link? Deep Link 是 App 的深度连接,当单击链接或编程请求调用Web URI意图时,Android系统按顺序依次尝试以下每一个操作,直到 ...
- Django【第9篇】:Django之用户认证auth模块
用户认证--------------auth模块 一.auth模块 from django.contrib import auth 1 .authenticate() :验证用户输入的用户名和密码 ...
- 路径path知识点
1. 获取当前文件的路径 test.py os.path.abspath(path) # 返回当前文件运行的绝对路径 print("程序的绝对路径是",os.path.abspat ...
- 【02】Python 字符串、列表、元组、字典
1 列表 list就是一种采用分离式技术实现的动态顺序表(tuple也一样): 在建立空表(或者很小的表)时,系统分配一块能容纳8个元素的存储区: 在执行插入操作(insert或append)时,如果 ...
- 6364. 【NOIP2019模拟2019.9.20】养马
题目描述 题解 一种显然的水法:max(0,-(点权-边权之和*2)) 这样会挂是因为在中途体力值可能会更小,所以考虑求走完每棵子树所需的至少体力值 考虑从子树往上推求出当前点的答案 设每棵子树从根往 ...
- linux运维、架构之路-redis
一.redis介绍 Redis是一个开源,高级的键值存储和一个适用的解决方案,用于构建高性能,可扩展的Web应用程序. Redis属于非关系型数据库和Memcached类似,redis也是一个key- ...
- java.util.Properties的使用及读取资源文件
1.工具类Utils package com.oy.utils; import java.io.BufferedInputStream; import java.io.Closeable; impor ...
- Leetcode 3. Longest Substring Without Repeating Characters(string 用法 水题)
3. Longest Substring Without Repeating Characters Medium Given a string, find the length of the long ...
- 《SQL Server 2012 T-SQL基础》读书笔记 - 6.集合运算
Chapter 6 Set Operators 语法如下: Input Query1 <set_operator> Input Query2 [ORDER BY ...] 有ORDER B ...