版权声明:欢迎关注我的博客,本文为博主【炒饭君】原创文章,未经博主同意不得转载 https://blog.csdn.net/a1061747415/article/details/36685493

Dice

Problem Description
You have a dice with m faces, each face contains a distinct number. We assume when we tossing the dice, each face will occur randomly and uniformly. Now you have T query to answer, each query has one of the following form:
0 m n: ask for the expected number of tosses until the last n times results are all same.
1 m n: ask for the expected number of tosses until the last n consecutive results are pairwise different.
 

Input
The first line contains a number T.(1≤T≤100) The next T line each line contains a query as we mentioned above. (1≤m,n≤106) For second kind query, we guarantee n≤m. And in order to avoid potential precision issue, we guarantee the result for our query
will not exceeding 109 in this problem.
 

Output
For each query, output the corresponding result. The answer will be considered correct if the absolute or relative error doesn't exceed 10-6.
 

Sample Input

6
0 6 1
0 6 3
0 6 5
1 6 2
1 6 4
1 6 6
10
1 4534 25
1 1232 24
1 3213 15
1 4343 24
1 4343 9
1 65467 123
1 43434 100
1 34344 9
1 10001 15
1 1000000 2000
 

Sample Output

1.000000000
43.000000000
1555.000000000
2.200000000
7.600000000
83.200000000
25.586315824
26.015990037
15.176341160
24.541045769
9.027721917
127.908330426
103.975455253
9.003495515
15.056204472
4731.706620396
 

Source
 

题目大意:

m边形的骰子,问你出现连续同样(不同)n次须要掷的次数的数学期望。

解题思路:

利用递归方式的DP的思想推公式

(1)若询问为0,则:

dp[i] 记录的是已经连续i个同样,到n个同样同须要的次数的数学期望
dp[0]= 1+dp[1]
dp[1]= 1+( 1/m*dp[2]+(m-1)/m*dp[1])=1+(dp[2]+(m-1)*dp[1])/m;
dp[2]= 1+(dp[3]+(m-1)*dp[2])/m;
....................
dp[n]= 0

推出:

dp[i]   = 1 + ( (m-1)*dp[1] + dp[i+1] ) / m
dp[i+1] = 1 + ( (m-1)*dp[1] + dp[i+2] ) / m

因此。m*(dp[i+1]-dp[i])=(dp[i+2]-dp[i+1])

我们发现是等比数列

dp[0]-dp[1]=1;
dp[1]-dp[2]=m;
..........
dp[n-1]-dp[n]=m^(n-1)

累加,得:dp[0]-dp[n]=1+m+m^2+..........m^(n-1)=(1-m^n)/(1-m)

所以:dp[0]=(1-m^n)/(1-m);

(2)若询问为1,则:

 dp[0] = 1 + dp[1]
 dp[1] = 1 + (dp[1] + (m-1) dp[2]) / m
 dp[2] = 1 + (dp[1] + dp[2] + (m-2) dp[3]) / m
 dp[i] = 1 + (dp[1] + dp[2] + ... dp[i] + (m-i)*dp[i+1]) / m
dp[i+1]= 1 + (dp[1] + dp[2] + ... dp[i] + dp[i+1] + (m-i-1)*dp[i+1]) / m
 ...
 dp[n] = 0;

选出 dp[i] 和 dp[i+1] 这两行相减 得

dp[i] - dp[i+1] = (m-i-1)/m * (dp[i+1] - dp[i+2]);

因此  dp[i+1] - dp[i+2] = m/(m-i-1)*(dp[i]-dp[i+1]);

所以:
dp[0]-dp[1]=1;
dp[1]-dp[2]=1*m/(m-1);
dp[2]-dp[3]=1*m/(m-1)*m/(m-2);
..........

dp[n-1]-dp[n]=1*m/(m-1)*m/(m-2)*.......*m/(m-n+1);

累加得到答案

解题代码:

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std; inline double solve(){
int op,m,n;
scanf("%d%d%d",&op,&m,&n);
double ans=0;
if(op==0){
for(int i=0;i<=n-1;i++){
ans+=pow(1.0*m,i);
}
}else{
double tmp=1.0;
for(int i=1;i<=n;i++){
ans+=tmp;
tmp*=m*1.0/(m-i);
}
}
return ans;
} int main(){
int t;
while(scanf("%d",&t)!=EOF){
while(t-- >0){
printf( "%.9lf\n",solve() );
}
}
return 0;
}

HDU 4652 Dice (概率DP)的更多相关文章

  1. hdu 4652 Dice 概率DP

    思路: dp[i]表示当前在已经投掷出i个不相同/相同这个状态时期望还需要投掷多少次 对于第一种情况有: dp[0] = 1+dp[1] dp[1] = 1+((m-1)*dp[1]+dp[2])/m ...

  2. HDU 4599 Dice (概率DP+数学+快速幂)

    题意:给定三个表达式,问你求出最小的m1,m2,满足G(m1) >= F(n), G(m2) >= G(n). 析:这个题是一个概率DP,但是并没有那么简单,运算过程很麻烦. 先分析F(n ...

  3. hdu 4599 Dice 概率DP

    思路: 1.求f[n];dp[i]表示i个连续相同时的期望 则 dp[0]=1+dp[1]     dp[1]=1+(5dp[1]+dp[2])/6     ……     dp[i]=1+(5dp[1 ...

  4. HDU 3853LOOPS(简单概率DP)

    HDU 3853    LOOPS 题目大意是说人现在在1,1,需要走到N,N,每次有p1的可能在元位置不变,p2的可能走到右边一格,有p3的可能走到下面一格,问从起点走到终点的期望值 这是弱菜做的第 ...

  5. Throwing Dice(概率dp)

    C - Throwing Dice Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Lig ...

  6. HDU - 1099 - Lottery - 概率dp

    http://acm.hdu.edu.cn/showproblem.php?pid=1099 最最简单的概率dp,完全是等概率转移. 设dp[i]为已有i张票,还需要抽几次才能集齐的期望. 那么dp[ ...

  7. HDU 4405 【概率dp】

    题意: 飞行棋,从0出发要求到n或者大于n的步数的期望.每一步可以投一下筛子,前进相应的步数,筛子是常见的6面筛子. 但是有些地方可以从a飞到大于a的b,并且保证每个a只能对应一个b,而且可以连续飞, ...

  8. HDU 4576 Robot(概率dp)

    题目 /*********************复制来的大致题意********************** 有N个数字,M个操作, 区间L, R. 然后问经过M个操作后落在[L, R]的概率. * ...

  9. [HDU 4089]Activation[概率DP]

    题意: 有n个人排队等着在官网上激活游戏.Tomato排在第m个. 对于队列中的第一个人.有以下情况: 1.激活失败,留在队列中等待下一次激活(概率为p1) 2.失去连接,出队列,然后排在队列的最后( ...

  10. hdu 3853 LOOPS 概率DP

    简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...

随机推荐

  1. spark streaming 笔记

    spark streaming项目 学习笔记 为什么要flume+kafka? 生成数据有高峰与低峰,如果直接高峰数据过来flume+spark/storm,实时处理容易处理不过来,扛不住压力.而选用 ...

  2. Oracle学习笔记<6>

    建表 1.建表语句语法 create table [schema.]table_name( 字段名 字段类型 [默认值] [列级约束], 字段名 字段类型 [默认值] [列级约束], 字段名 字段类型 ...

  3. python删除某一行

    整理了网络上的一些方法,一般有两种方法:第一种:是先把文件读入内存,在内存中修改后再写入源文件. 例子:将内容包含“123”的所有行删去: with open('C:/Users/lai/Deskto ...

  4. 从零开始做一个Jmeter性能测试

    安装Jmeter 1.下载地址http://jmeter.apache.org/download_jmeter.cgi 2.解压下载文件,然后将bin目录添加到系统环境变量PATH里. 3.确保已安装 ...

  5. ASP.NET Core 2.1 JWT token (一) - 简书

    原文:ASP.NET Core 2.1 JWT token (一) - 简书 JwtBearer认证是一种标准的,通用的,无状态的,与语言无关的认证方式.Bearer验证属于HTTP协议标准验证. 如 ...

  6. 委托的异步编程和同步编程的使用( Invoke 和BeginInvoke)

    一,区别: 使用Invoke完成一个委托方法的封送,就类似于使用SendMessage方法来给界面线程发送消息,是一个同步方法.也就是说在Invoke封送的方法被执行完毕前,Invoke方法不会返回, ...

  7. new做了些什么?

    new做了些什么? function People(name, age){ this.name = name; this.age = age; }; var xiaoming = new People ...

  8. 前序遍历+中序遍历 --> 后序遍历 (二叉树)

  9. Flask-Login的实现

    Flask-Login Flask-Login 为 Flask 提供用户 session 的管理机制.它可以处理 Login.Logout 和 session 等服务. 作用: 将用户的 id 储存在 ...

  10. java中的成员变量、类变量,成员方法、类方法 属性和方法区别

    成员变量:包括实例变量和类变量,用static修饰的是类变量,不用static修饰的是实例变量,所有类的成员变量可以通过this来引用. 类变量:静态域,静态字段,或叫静态变量,它属于该类所有实例共有 ...