(五)用正则化(Regularization)来解决过拟合
1 过拟合
过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上。出现over-fitting的原因是多方面的:
1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导致噪声很大
2 )特征数目过多导致模型过于复杂,如下面的图所示:

看上图中的多项式回归(Polynomial regression),左边为模型复杂度很低,右边的模型复杂度就过高,而中间的模型为比较合适的模型,对于Logistic有同样的情况

2)如何避免过拟合
1) 控制特征的数目,可以通过特征组合,或者模型选择算法
2)Regularization,保持所有特征,但是减小每个特征的参数向量θ的大小,使其对分类y所做的共享很小

下面来详细分析正则化

来看多项式拟合的问题,对于右图复杂的模型,只需控制θ3与θ4的大小,即可使得模型达到与作图类似的结果,下面引入线性回归的L2正则的公式

如上过程就是正则化的过程,注意正则化是不带θ0的,其实带不带在实际运用中只会有很小的差异,所以不必在意,现在只需要控制λ的大小,当λ很大时,θ1到θn就会很小,即达到了约束数量庞大的特征的目的。

若选择过大的λ,会使得参数向量θ非常小,从而只剩下θ0,使得模型看起来像一条直线

而且,模型会欠拟合,梯度下降也不会收敛,而λ的选择将在特征选择中讲到

带有正则化项的梯度下降算法,首先要特殊处理θ0,

关于Normal Equation 的正则化

并且有一个不错的消息就是括号中的矩阵必定为可逆的
Logistic的正则化
首先看L2正则

其正则化的Gradient Descent形式:

3 正则化的一些概念
1)概念
L0正则化的值是模型参数中非零参数的个数。
L1正则化表示各个参数绝对值之和。
L2正则化标识各个参数的平方的和的开方值。
2)正则化后会导致参数稀疏,一个好处是可以简化模型,避免过拟合。因为一个模型中真正重要的参数可能并不多,如果考虑所有的参数起作用,那么可以对训练数据可以预测的很好,但是对测试数据就只能呵呵了。另一个好处是参数变少可以使整个模型获得更好的可解释性。
且参数越小,模型就会越简单,这是因为越复杂的模型,越是会尝试对所有的样本进行拟合,甚至包括一些异常样本点,这就容易造成在较小的区间里预测值产生较大的波动,这种较大的波动也反映了在这个区间里的导数很大,而只有较大的参数值才能产生较大的导数。因此复杂的模型,其参数值会比较大。
3)三种正则概述
-》L0正则化
根据上面的讨论,稀疏的参数可以防止过拟合,因此用L0范数(非零参数的个数)来做正则化项是可以防止过拟合的。
从直观上看,利用非零参数的个数,可以很好的来选择特征,实现特征稀疏的效果,具体操作时选择参数非零的特征即可。但因为L0正则化很难求解,是个NP难问题,因此一般采用L1正则化。L1正则化是L0正则化的最优凸近似,比L0容易求解,并且也可以实现稀疏的效果。
-》L1正则化
L1正则化在实际中往往替代L0正则化,来防止过拟合。在江湖中也人称Lasso。
L1正则化之所以可以防止过拟合,是因为L1范数就是各个参数的绝对值相加得到的,我们前面讨论了,参数值大小和模型复杂度是成正比的。因此复杂的模型,其L1范数就大,最终导致损失函数就大,说明这个模型就不够好。
-》L2正则化
L2正则化可以防止过拟合的原因和L1正则化一样,只是形式不太一样。
L2范数是各参数的平方和再求平方根,我们让L2范数的正则项最小,可以使W的每个元素都很小,都接近于0。但与L1范数不一样的是,它不会是每个元素为0,而只是接近于0。越小的参数说明模型越简单,越简单的模型越不容易产生过拟合现象。
L2正则化江湖人称Ridge,也称“岭回归”
4)几何解释

我们考虑两维的情况,在(w1, w2)平面上可以画出目标函数的等高线,而约束条件则成为平面上半径为C的一个 norm ball 。等高线与 norm ball 首次相交的地方就是最优解:

可以看到,L1-ball 与L2-ball 的不同就在于L1在和每个坐标轴相交的地方都有“角”出现,有很大的几率等高线会和L1-ball在四个角,也就是坐标轴上相遇,坐标轴上就可以产生稀疏,因为某一维可以表示为0。而等高线与L2-ball在坐标轴上相遇的概率就比较小了。
总结:L1会趋向于产生少量的特征,而其他的特征都是0,而L2会选择更多的特征,这些特征都会接近于0。Lasso在特征选择时候非常有用,而Ridge就只是一种规则化而已。在所有特征中只有少数特征起重要作用的情况下,选择Lasso比较合适,因为它能自动选择特征。而如果所有特征中,大部分特征都能起作用,而且起的作用很平均,那么使用Ridge也许更合适。
参考:1) NG讲义
2) http://blog.csdn.net/zouxy09/article/details/24971995/
(五)用正则化(Regularization)来解决过拟合的更多相关文章
- CS229 5.用正则化(Regularization)来解决过拟合
1 过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上.出现over-fitting的原因是多方面的: 1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导 ...
- [DeeplearningAI笔记]改善深层神经网络1.4_1.8深度学习实用层面_正则化Regularization与改善过拟合
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(re ...
- 机器学习(五)--------正则化(Regularization)
过拟合(over-fitting) 欠拟合 正好 过拟合 怎么解决 1.丢弃一些不能帮助我们正确预测的特征.可以是手工选择保留哪些特征,或者使用一 些模型选择的算法来帮忙(例如 PCA) 2.正则化. ...
- L1与L2正则化的对比及多角度阐述为什么正则化可以解决过拟合问题
正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束.调整或缩小.也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险. 一. ...
- [C3] 正则化(Regularization)
正则化(Regularization - Solving the Problem of Overfitting) 欠拟合(高偏差) VS 过度拟合(高方差) Underfitting, or high ...
- zzL1和L2正则化regularization
最优化方法:L1和L2正则化regularization http://blog.csdn.net/pipisorry/article/details/52108040 机器学习和深度学习常用的规则化 ...
- 7、 正则化(Regularization)
7.1 过拟合的问题 到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fittin ...
- 1.4 正则化 regularization
如果你怀疑神经网络过度拟合的数据,即存在高方差的问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,但是你可能无法时时准备足够多的训练数据,或者获取更多数据的代价很高.但正则 ...
- 过拟合是什么?如何解决过拟合?l1、l2怎么解决过拟合
1. 过拟合是什么? https://www.zhihu.com/question/264909622 那个英文回答就是说h1.h2属于同一个集合,实际情况是h2比h1错误率低,你用h1来训练, ...
随机推荐
- POJ 1552
#include<iostream> using namespace std; int main() { ]; int i,j; ; do{ sum=; ;num[i-]!=&&a ...
- D&F学数据结构系列——AVL树(平衡二叉树)
AVL树(带有平衡条件的二叉查找树) 定义:一棵AVL树是其每个节点的左子树和右子树的高度最多差1的二叉查找树. 为什么要使用AVL树(即为什么要给二叉查找树增加平衡条件),已经在我之前的博文中说到过 ...
- VMware下Ubuntu与宿主Windows共享文件夹
概述1.安装VMware Tool2.设置共享 步骤开始安装VMware Tool 显示如下画面(如果宿主无法访问外网,可能会出现一个更新失败,可以无视之) 通过下列命令解压.执行,分别是下面的tar ...
- hdu 4259 Double Dealing
思路: 找每一个数的循环节,注意优化!! 每次找一个数的循环节时,记录其路径,下次对应的数就不用再找了…… 代码如下: #include<iostream> #include<cst ...
- UVA 10892 LCM Cardinality 数学
A pair of numbers has a unique LCM but a single number can be the LCM of more than one possiblepairs ...
- jquery的ajax()函数传值中文乱码解决方法介绍
jquery的ajax()函数传值中文乱码解决方法介绍,需要的朋友可以参考下 代码如下: $.ajax({ dataType : ‘json', type : ‘POST', url : ‘http: ...
- hdu 4112 Break the Chocolate(ceil floor)
规律题: #include<stdio.h> #include<math.h> #define eps 1e-8 int main() { int _case; int n,m ...
- stringbuffer与stringbuilder的区别?
1. 在执行速度方面的比较:StringBuilder > StringBuffer 2. StringBuffer与StringBuilder,他们是字符串变量,是可改变的对象,每当我们用它们 ...
- Docker搭建MySQL服务
Docker开源镜像 前面我们已经安装好了Docker,也简单了解了Docker.那么我们可以尝试搭建一个MySQL服务. 要搭建服务就要启动服务容器,要创建容易就要有镜像,Docker提供了一个类似 ...
- ThinkPHP:读取数据库数据 (2)
项目配置文件Conf/config.php中添加数据库连接信息: // 添加数据库配置信息 'DB_TYPE' => 'mysql', // 数据库类型 'DB_HOST' => 'loc ...