1 过拟合

过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上。出现over-fitting的原因是多方面的:

1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导致噪声很大

2 )特征数目过多导致模型过于复杂,如下面的图所示:

看上图中的多项式回归(Polynomial regression),左边为模型复杂度很低,右边的模型复杂度就过高,而中间的模型为比较合适的模型,对于Logistic有同样的情况

2)如何避免过拟合

1) 控制特征的数目,可以通过特征组合,或者模型选择算法

2)Regularization,保持所有特征,但是减小每个特征的参数向量θ的大小,使其对分类y所做的共享很小

下面来详细分析正则化

来看多项式拟合的问题,对于右图复杂的模型,只需控制θ3与θ4的大小,即可使得模型达到与作图类似的结果,下面引入线性回归的L2正则的公式

如上过程就是正则化的过程,注意正则化是不带θ0的,其实带不带在实际运用中只会有很小的差异,所以不必在意,现在只需要控制λ的大小,当λ很大时,θ1到θn就会很小,即达到了约束数量庞大的特征的目的。

若选择过大的λ,会使得参数向量θ非常小,从而只剩下θ0,使得模型看起来像一条直线

而且,模型会欠拟合,梯度下降也不会收敛,而λ的选择将在特征选择中讲到

带有正则化项的梯度下降算法,首先要特殊处理θ0,

关于Normal Equation 的正则化

并且有一个不错的消息就是括号中的矩阵必定为可逆的

Logistic的正则化

首先看L2正则

其正则化的Gradient Descent形式:

 3 正则化的一些概念

1)概念

  L0正则化的值是模型参数中非零参数的个数。

  L1正则化表示各个参数绝对值之和。

  L2正则化标识各个参数的平方的和的开方值。

2)正则化后会导致参数稀疏,一个好处是可以简化模型,避免过拟合。因为一个模型中真正重要的参数可能并不多,如果考虑所有的参数起作用,那么可以对训练数据可以预测的很好,但是对测试数据就只能呵呵了。另一个好处是参数变少可以使整个模型获得更好的可解释性。

且参数越小,模型就会越简单,这是因为越复杂的模型,越是会尝试对所有的样本进行拟合,甚至包括一些异常样本点,这就容易造成在较小的区间里预测值产生较大的波动,这种较大的波动也反映了在这个区间里的导数很大,而只有较大的参数值才能产生较大的导数。因此复杂的模型,其参数值会比较大。

3)三种正则概述

-》L0正则化

根据上面的讨论,稀疏的参数可以防止过拟合,因此用L0范数(非零参数的个数)来做正则化项是可以防止过拟合的。

从直观上看,利用非零参数的个数,可以很好的来选择特征,实现特征稀疏的效果,具体操作时选择参数非零的特征即可。但因为L0正则化很难求解,是个NP难问题,因此一般采用L1正则化。L1正则化是L0正则化的最优凸近似,比L0容易求解,并且也可以实现稀疏的效果。

-》L1正则化

L1正则化在实际中往往替代L0正则化,来防止过拟合。在江湖中也人称Lasso。

L1正则化之所以可以防止过拟合,是因为L1范数就是各个参数的绝对值相加得到的,我们前面讨论了,参数值大小和模型复杂度是成正比的。因此复杂的模型,其L1范数就大,最终导致损失函数就大,说明这个模型就不够好。

-》L2正则化

L2正则化可以防止过拟合的原因和L1正则化一样,只是形式不太一样。

L2范数是各参数的平方和再求平方根,我们让L2范数的正则项最小,可以使W的每个元素都很小,都接近于0。但与L1范数不一样的是,它不会是每个元素为0,而只是接近于0。越小的参数说明模型越简单,越简单的模型越不容易产生过拟合现象。

L2正则化江湖人称Ridge,也称“岭回归”

4)几何解释

我们考虑两维的情况,在(w1, w2)平面上可以画出目标函数的等高线,而约束条件则成为平面上半径为C的一个 norm ball 。等高线与 norm ball 首次相交的地方就是最优解:

可以看到,L1-ball 与L2-ball 的不同就在于L1在和每个坐标轴相交的地方都有“角”出现,有很大的几率等高线会和L1-ball在四个角,也就是坐标轴上相遇,坐标轴上就可以产生稀疏,因为某一维可以表示为0。而等高线与L2-ball在坐标轴上相遇的概率就比较小了。

总结:L1会趋向于产生少量的特征,而其他的特征都是0,而L2会选择更多的特征,这些特征都会接近于0。Lasso在特征选择时候非常有用,而Ridge就只是一种规则化而已。在所有特征中只有少数特征起重要作用的情况下,选择Lasso比较合适,因为它能自动选择特征。而如果所有特征中,大部分特征都能起作用,而且起的作用很平均,那么使用Ridge也许更合适。

参考:1) NG讲义

   2) http://blog.csdn.net/zouxy09/article/details/24971995/

(五)用正则化(Regularization)来解决过拟合的更多相关文章

  1. CS229 5.用正则化(Regularization)来解决过拟合

    1 过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上.出现over-fitting的原因是多方面的: 1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导 ...

  2. [DeeplearningAI笔记]改善深层神经网络1.4_1.8深度学习实用层面_正则化Regularization与改善过拟合

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(re ...

  3. 机器学习(五)--------正则化(Regularization)

    过拟合(over-fitting) 欠拟合 正好 过拟合 怎么解决 1.丢弃一些不能帮助我们正确预测的特征.可以是手工选择保留哪些特征,或者使用一 些模型选择的算法来帮忙(例如 PCA) 2.正则化. ...

  4. L1与L2正则化的对比及多角度阐述为什么正则化可以解决过拟合问题

    正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束.调整或缩小.也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险. 一. ...

  5. [C3] 正则化(Regularization)

    正则化(Regularization - Solving the Problem of Overfitting) 欠拟合(高偏差) VS 过度拟合(高方差) Underfitting, or high ...

  6. zzL1和L2正则化regularization

    最优化方法:L1和L2正则化regularization http://blog.csdn.net/pipisorry/article/details/52108040 机器学习和深度学习常用的规则化 ...

  7. 7、 正则化(Regularization)

    7.1 过拟合的问题 到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fittin ...

  8. 1.4 正则化 regularization

    如果你怀疑神经网络过度拟合的数据,即存在高方差的问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,但是你可能无法时时准备足够多的训练数据,或者获取更多数据的代价很高.但正则 ...

  9. 过拟合是什么?如何解决过拟合?l1、l2怎么解决过拟合

    1. 过拟合是什么? https://www.zhihu.com/question/264909622    那个英文回答就是说h1.h2属于同一个集合,实际情况是h2比h1错误率低,你用h1来训练, ...

随机推荐

  1. Changing the Overridden Method’s Characteristics

    修改重写方法的特征 在大多数情况下,我们重写(override)一个 virtual 方法是为了改变它的实现.然后,有时我们却想改变该 virtual 方法的其他的特征,这往往会带来一系列问题. 1) ...

  2. 机器学习之逻辑回归(Logistic Regression)

    1. Classification 这篇文章我们来讨论分类问题(classification problems),也就是说你想预测的变量 y 是一个离散的值.我们会使用逻辑回归算法来解决分类问题. 之 ...

  3. Good Bye 2014 D. New Year Santa Network 图论+期望

    D. New Year Santa Network   New Year is coming in Tree World! In this world, as the name implies, th ...

  4. JDBC第二次学习

    脑子太笨,必须得记录下来一些文字,方便回来查询. 这是我的第二次学习JDBC的笔记,看的是传智播客——李勇老师的JDBC系列,已看到第23集. 分析在实际项目中该如何应用JDBC 一个简单用户相关的数 ...

  5. MyEclipse — Maven+Spring+Struts+Hibernate 整合 [学习笔记-3]

    引入Struts2 在pom.xml中加入jar包 <!-- struts2 --> <dependency> <groupId>org.apache.struts ...

  6. Spring MVC 教程,快速入门,深入分析(转)

    原文地址:http://elf8848.iteye.com/blog/875830/

  7. IOS 视频分解图片、图片合成视频

    在IOS视频处理中,视频分解图片和图片合成视频是IOS视频处理中经常遇到的问题,这篇博客就这两个部分对IOS视频图像的相互转换做一下分析. (1)视频分解图片 这里视频分解图片使用的是AVAssetI ...

  8. iOS开发--成员变量与属性

    属性变量 @interface MyClass:NSObject{ MyObjecct *_object; } @property(nonamtic, retain) MyObjecct *objec ...

  9. 神经网络:卷积神经网络CNN

    一.前言 这篇卷积神经网络是前面介绍的多层神经网络的进一步深入,它将深度学习的思想引入到了神经网络当中,通过卷积运算来由浅入深的提取图像的不同层次的特征,而利用神经网络的训练过程让整个网络自动调节卷积 ...

  10. android学习系列:jercy——AI3 的博客

    [android学习之十七]——特色功能2:桌面组件(快捷方式,实时文件夹) 二.桌面组件 1.快捷方式 Android手机上得快捷方式的意思可以以我们实际PC机器上程序的快捷方式来理解.而andro ...