题目链接:http://hihocoder.com/problemset/problem/1176

思路:先判是否连通,再判是否有0个或2个度为奇数的点。

 /*
━━━━━┒ギリギリ♂ eye!
┓┏┓┏┓┃キリキリ♂ mind!
┛┗┛┗┛┃\○/
┓┏┓┏┓┃ /
┛┗┛┗┛┃ノ)
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┃┃┃┃┃┃
┻┻┻┻┻┻
*/
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <climits>
#include <complex>
#include <fstream>
#include <cassert>
#include <cstdio>
#include <bitset>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <ctime>
#include <set>
#include <map>
#include <cmath>
using namespace std;
#define fr first
#define sc second
#define cl clear
#define BUG puts("here!!!")
#define W(a) while(a--)
#define pb(a) push_back(a)
#define Rint(a) scanf("%d", &a)
#define Rll(a) scanf("%lld", &a)
#define Rs(a) scanf("%s", a)
#define Cin(a) cin >> a
#define FRead() freopen("in", "r", stdin)
#define FWrite() freopen("out", "w", stdout)
#define Rep(i, len) for(int i = 0; i < (len); i++)
#define For(i, a, len) for(int i = (a); i < (len); i++)
#define Cls(a) memset((a), 0, sizeof(a))
#define Clr(a, x) memset((a), (x), sizeof(a))
#define Full(a) memset((a), 0x7f7f7f, sizeof(a))
#define lrt rt << 1
#define rrt rt << 1 | 1
#define pi 3.14159265359
#define RT return
#define lowbit(x) x & (-x)
#define onenum(x) __builtin_popcount(x)
typedef long long LL;
typedef long double LD;
typedef unsigned long long ULL;
typedef pair<int, int> pii;
typedef pair<string, int> psi;
typedef pair<LL, LL> pll;
typedef map<string, int> msi;
typedef vector<int> vi;
typedef vector<LL> vl;
typedef vector<vl> vvl;
typedef vector<bool> vb; const int maxn = ;
int n, m;
int d[maxn];
int pre[maxn]; int find(int x) { return x == pre[x] ? x : pre[x] = find(pre[x]); }
void unite(int x, int y) { x = find(x); y = find(y); if(x != y) pre[x] = y; } int main() {
// FRead();
int u, v;
while(~Rint(n) && ~Rint(m)) {
Cls(d); For(i, , n+) pre[i] = i;
Rep(i, m) {
Rint(u); Rint(v);
unite(u, v);
d[u]++; d[v]++;
}
bool exflag = ;
int cnt = ;
int fa = find();
For(i, , n+) {
if(fa != find(i)) exflag = ;
if(d[i] & ) cnt++;
}
if(!(cnt == || cnt == )) exflag = ;
exflag ? printf("Part\n") : printf("Full\n");
}
RT ;
}

[HIHO1176]欧拉路·一(欧拉图判定)的更多相关文章

  1. hiho48 : 欧拉路·一

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho最近在玩一个解密类的游戏,他们需要控制角色在一片原始丛林里面探险,收集道具,并找到最后的宝藏.现在他们控制的 ...

  2. [hihoCoder] 第四十九周: 欧拉路·一

    题目1 : 欧拉路·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho最近在玩一个解密类的游戏,他们需要控制角色在一片原始丛林里面探险,收集道具,并找到最 ...

  3. hdu 5833(欧拉路)

    The Best Path Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tot ...

  4. hiho一下 第四十九周 欧拉路&#183;一

    [题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描写叙述 小Hi和小Ho近期在玩一个解密类的游戏.他们须要控制角色在一片原始丛林里面探险 ...

  5. POJ 1637 Sightseeing tour (混合图欧拉路判定)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6986   Accepted: 2901 ...

  6. hiho一下 第四十九周 题目1 : 欧拉路·一【无向图 欧拉路问题】

    题目1 : 欧拉路·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho最近在玩一个解密类的游戏,他们需要控制角色在一片原始丛林里面探险,收集道具,并找到最 ...

  7. 欧拉路&&欧拉回路 概念及其练习

    欧拉路: 如果给定无孤立结点图G,若存在一条路,经过图中每边一次且仅一次,这条路称为欧拉路: 如果给定无孤立结点图G,若存在一条回路,经过图中每边一次且仅一次,那么该回路称为欧拉回路. 存在欧拉回路的 ...

  8. Catenyms (POJ2337) 字典序最小欧拉路

    // 很久不写图论,连模板也不熟悉了0.0 // 这题是一个技巧性比较高的暴力DFS Catenyms 题目大意 定义catenym为首尾字母相同的单词组成的单词对, 例如: dog.gopher g ...

  9. hiho欧拉路·二 --------- Fleury算法求欧拉路径

    hiho欧拉路·二 分析: 小Ho:这种简单的谜题就交给我吧! 小Hi:真的没问题么? <10分钟过去> 小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了. 小Hi:哎,我就知道你会遇 ...

随机推荐

  1. 【BZOJ】【1005】【HNOI2008】明明的烦恼

    Prufer序列/排列组合+高精度 窝不会告诉你我是先做了BZOJ1211然后才来做这题的>_>(为什么?因为我以前不会高精度呀……) 在A了BZOJ 1211和1089之后,蒟蒻终于有信 ...

  2. 奶牛通讯 usaco 网络流

    这道题很有意思,原题是只需输出最小割集大小,现在oj上改成了输出字典序最小的割集: 题解:可以考虑从小到大删边,若删掉这条边后,最小割变小,保持不变,记录此时的最小割大小: 若最小割不变,恢复这条边: ...

  3. asp.net 分布式缓存

    之前Velocity已被 集成到App Fabric(包含有WCF监控==)中.   网络Velocity使用大多是针对老版本:  老版本的下载地址:  http://www.microsoft.co ...

  4. C#中实现VB中的CreateObject方法

    经常看到有些VB的例子中直接用个CreateObject就可调用系统功能(大多是COM对象),像用户设定,网络设定等等.虽然C#中可以通过使用VB的命名空间的方法来调用CreateObject函数,但 ...

  5. ThinkPHP3.2 分页实现

    ThinkPHP 分页实现   TP3.2框架手册,有一个数据分页,不过每次都要写太多的代码,还有中文设置等有些麻烦,做为程序开发者,有必要整理下: O.先看效果图 一.分页方法 /** * TODO ...

  6. APM 终端用户体验监控分析(上)

    一.前言 理解用户体验是从终端用户角度了解应用交付质量的关键,这是考量业务健康运转的潜在因素.捕获此类数据的方法各种各样,具体的实现途径由应用.基础设施架构以及管理者和管理过程决定. 二.终端用户监控 ...

  7. FastJson与Gson小测试

    最近用到Json来传输数据,找到两个比较简单的工具 Gson 和 FastJson随便测试一下两个工具的效率~ 1 package com.json.fast; import java.util.Ar ...

  8. Map中如何把没有定义操作符<的类作为key

    Map中如何把没有定义操作符<的类作为key 其实,为了实现快速查找,map内部本身就是按序存储的(比如红黑树).在我们插入<key, value>键值对时,就会按照key的大小顺序 ...

  9. Android核心分析之十五Android输入系统之输入路径详解

       Android用户事件输入路径 1 输入路径的一般原理 按键,鼠标消息从收集到最终将发送到焦点窗口,要经历怎样的路径,是Android GWES设计方案中需要详细考虑的问题.按键,鼠标等用户消息 ...

  10. CentOS系统配置redis

      1.切换到/usr/sr cd /usr/src wget http://download.redis.io/releases/redis-3.2.0.tar.gz   2.解压,安装 tar x ...