pandlepanlde-01-必备数学知识
文章目录
必备数学知识
在入门深度学习目标检测领域之前,先给大家补点数学知识,因为无论是深度学习还是机器学习,背后都是有一些数学原理和公式推导的,所以掌握必备的数学知识必不可少,下面会给大家简单科普下常用的数学知识有哪些~
数学基础知识
数据科学需要一定的数学基础,但仅仅做应用的话,如果时间不多,不用学太深,了解基本公式即可,遇到问题再查吧。
下面是常见的一些数学基础概念,建议大家收藏后再仔细阅读,遇到不懂的概念可以直接在这里查~
高等数学
1.导数定义:
导数和微分的概念
f
′
(
x
0
)
=
lim
Δ
x
→
0
f
(
x
0
+
Δ
x
)
−
f
(
x
0
)
Δ
x
f'({{x}_{0}})=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}
f′(x0)=Δx→0limΔxf(x0+Δx)−f(x0) (1)
或者:
f
′
(
x
0
)
=
lim
x
→
x
0
f
(
x
)
−
f
(
x
0
)
x
−
x
0
f'({{x}_{0}})=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}}
f′(x0)=x→x0limx−x0f(x)−f(x0) (2)
2.左右导数导数的几何意义和物理意义
函数
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0处的左、右导数分别定义为:
左导数:
f
′
−
(
x
0
)
=
lim
Δ
x
→
0
−
f
(
x
0
+
Δ
x
)
−
f
(
x
0
)
Δ
x
=
lim
x
→
x
0
−
f
(
x
)
−
f
(
x
0
)
x
−
x
0
,
(
x
=
x
0
+
Δ
x
)
{{{f}'}_{-}}({{x}_{0}})=\underset{\Delta x\to {{0}^{-}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}},(x={{x}_{0}}+\Delta x)
f′−(x0)=Δx→0−limΔxf(x0+Δx)−f(x0)=x→x0−limx−x0f(x)−f(x0),(x=x0+Δx)
右导数:
f
′
+
(
x
0
)
=
lim
Δ
x
→
0
+
f
(
x
0
+
Δ
x
)
−
f
(
x
0
)
Δ
x
=
lim
x
→
x
0
+
f
(
x
)
−
f
(
x
0
)
x
−
x
0
{{{f}'}_{+}}({{x}_{0}})=\underset{\Delta x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}}
f′+(x0)=Δx→0+limΔxf(x0+Δx)−f(x0)=x→x0+limx−x0f(x)−f(x0)
3.函数的可导性与连续性之间的关系
Th1: 函数
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0处可微
⇔
f
(
x
)
\Leftrightarrow f(x)
⇔f(x)在
x
0
x_0
x0处可导
Th2: 若函数在点
x
0
x_0
x0处可导,则
y
=
f
(
x
)
y=f(x)
y=f(x)在点
x
0
x_0
x0处连续,反之则不成立。即函数连续不一定可导。
Th3:
f
′
(
x
0
)
{f}'({{x}_{0}})
f′(x0)存在
⇔
f
′
−
(
x
0
)
=
f
′
+
(
x
0
)
\Leftrightarrow {{{f}'}_{-}}({{x}_{0}})={{{f}'}_{+}}({{x}_{0}})
⇔f′−(x0)=f′+(x0)
4.平面曲线的切线和法线
切线方程 :
y
−
y
0
=
f
′
(
x
0
)
(
x
−
x
0
)
y-{{y}_{0}}=f'({{x}_{0}})(x-{{x}_{0}})
y−y0=f′(x0)(x−x0)
法线方程:
y
−
y
0
=
−
1
f
′
(
x
0
)
(
x
−
x
0
)
,
f
′
(
x
0
)
≠
0
y-{{y}_{0}}=-\frac{1}{f'({{x}_{0}})}(x-{{x}_{0}}),f'({{x}_{0}})\ne 0
y−y0=−f′(x0)1(x−x0),f′(x0)=0
5.四则运算法则
设函数
u
=
u
(
x
)
,
v
=
v
(
x
)
u=u(x),v=v(x)
u=u(x),v=v(x)]在点
x
x
x可导则
(1)
(
u
±
v
)
′
=
u
′
±
v
′
(u\pm v{)}'={u}'\pm {v}'
(u±v)′=u′±v′
d
(
u
±
v
)
=
d
u
±
d
v
d(u\pm v)=du\pm dv
d(u±v)=du±dv
(2)
(
u
v
)
′
=
u
v
′
+
v
u
′
(uv{)}'=u{v}'+v{u}'
(uv)′=uv′+vu′
d
(
u
v
)
=
u
d
v
+
v
d
u
d(uv)=udv+vdu
d(uv)=udv+vdu
(3)
(
u
v
)
′
=
v
u
′
−
u
v
′
v
2
(
v
≠
0
)
(\frac{u}{v}{)}'=\frac{v{u}'-u{v}'}{{{v}^{2}}}(v\ne 0)
(vu)′=v2vu′−uv′(v=0)
d
(
u
v
)
=
v
d
u
−
u
d
v
v
2
d(\frac{u}{v})=\frac{vdu-udv}{{{v}^{2}}}
d(vu)=v2vdu−udv
6.基本导数与微分表
(1)
y
=
c
y=c
y=c(常数)
y
′
=
0
{y}'=0
y′=0
d
y
=
0
dy=0
dy=0
(2)
y
=
x
α
y={{x}^{\alpha }}
y=xα(
α
\alpha
α为实数)
y
′
=
α
x
α
−
1
{y}'=\alpha {{x}^{\alpha -1}}
y′=αxα−1
d
y
=
α
x
α
−
1
d
x
dy=\alpha {{x}^{\alpha -1}}dx
dy=αxα−1dx
(3)
y
=
a
x
y={{a}^{x}}
y=ax
y
′
=
a
x
ln
a
{y}'={{a}^{x}}\ln a
y′=axlna
d
y
=
a
x
ln
a
d
x
dy={{a}^{x}}\ln adx
dy=axlnadx
特例:
(
e
x
)
′
=
e
x
({{{e}}^{x}}{)}'={{{e}}^{x}}
(ex)′=ex
d
(
e
x
)
=
e
x
d
x
d({{{e}}^{x}})={{{e}}^{x}}dx
d(ex)=exdx
(4)
y
=
log
a
x
y={{\log }_{a}}x
y=logax
y
′
=
1
x
ln
a
{y}'=\frac{1}{x\ln a}
y′=xlna1
d
y
=
1
x
ln
a
d
x
dy=\frac{1}{x\ln a}dx
dy=xlna1dx
特例:
y
=
ln
x
y=\ln x
y=lnx
(
ln
x
)
′
=
1
x
(\ln x{)}'=\frac{1}{x}
(lnx)′=x1
d
(
ln
x
)
=
1
x
d
x
d(\ln x)=\frac{1}{x}dx
d(lnx)=x1dx
(5)
y
=
sin
x
y=\sin x
y=sinx
y
′
=
cos
x
{y}'=\cos x
y′=cosx
d
(
sin
x
)
=
cos
x
d
x
d(\sin x)=\cos xdx
d(sinx)=cosxdx
(6)
y
=
cos
x
y=\cos x
y=cosx
y
′
=
−
sin
x
{y}'=-\sin x
y′=−sinx
d
(
cos
x
)
=
−
sin
x
d
x
d(\cos x)=-\sin xdx
d(cosx)=−sinxdx
(7)
y
=
tan
x
y=\tan x
y=tanx
y
′
=
1
cos
2
x
=
sec
2
x
{y}'=\frac{1}{{{\cos }^{2}}x}={{\sec }^{2}}x
y′=cos2x1=sec2x
d
(
tan
x
)
=
sec
2
x
d
x
d(\tan x)={{\sec }^{2}}xdx
d(tanx)=sec2xdx
(8)
y
=
cot
x
y=\cot x
y=cotx
y
′
=
−
1
sin
2
x
=
−
csc
2
x
{y}'=-\frac{1}{{{\sin }^{2}}x}=-{{\csc }^{2}}x
y′=−sin2x1=−csc2x
d
(
cot
x
)
=
−
csc
2
x
d
x
d(\cot x)=-{{\csc }^{2}}xdx
d(cotx)=−csc2xdx
(9)
y
=
sec
x
y=\sec x
y=secx
y
′
=
sec
x
tan
x
{y}'=\sec x\tan x
y′=secxtanx
d
(
sec
x
)
=
sec
x
tan
x
d
x
d(\sec x)=\sec x\tan xdx
d(secx)=secxtanxdx
(10)
y
=
csc
x
y=\csc x
y=cscx
y
′
=
−
csc
x
cot
x
{y}'=-\csc x\cot x
y′=−cscxcotx
d
(
csc
x
)
=
−
csc
x
cot
x
d
x
d(\csc x)=-\csc x\cot xdx
d(cscx)=−cscxcotxdx
(11)
y
=
arcsin
x
y=\arcsin x
y=arcsinx
y
′
=
1
1
−
x
2
{y}'=\frac{1}{\sqrt{1-{{x}^{2}}}}
y′=1−x2
1
d
(
arcsin
x
)
=
1
1
−
x
2
d
x
d(\arcsin x)=\frac{1}{\sqrt{1-{{x}^{2}}}}dx
d(arcsinx)=1−x2
1dx
(12)
y
=
arccos
x
y=\arccos x
y=arccosx
y
′
=
−
1
1
−
x
2
{y}'=-\frac{1}{\sqrt{1-{{x}^{2}}}}
y′=−1−x2
1
d
(
arccos
x
)
=
−
1
1
−
x
2
d
x
d(\arccos x)=-\frac{1}{\sqrt{1-{{x}^{2}}}}dx
d(arccosx)=−1−x2
1dx
(13)
y
=
arctan
x
y=\arctan x
y=arctanx
y
′
=
1
1
+
x
2
{y}'=\frac{1}{1+{{x}^{2}}}
y′=1+x21
d
(
arctan
x
)
=
1
1
+
x
2
d
x
d(\arctan x)=\frac{1}{1+{{x}^{2}}}dx
d(arctanx)=1+x21dx
(14)
y
=
arc
cot
x
y=\operatorname{arc}\cot x
y=arccotx
y
′
=
−
1
1
+
x
2
{y}'=-\frac{1}{1+{{x}^{2}}}
y′=−1+x21
d
(
arc
cot
x
)
=
−
1
1
+
x
2
d
x
d(\operatorname{arc}\cot x)=-\frac{1}{1+{{x}^{2}}}dx
d(arccotx)=−1+x21dx
(15)
y
=
s
h
x
y=shx
y=shx
y
′
=
c
h
x
{y}'=chx
y′=chx
d
(
s
h
x
)
=
c
h
x
d
x
d(shx)=chxdx
d(shx)=chxdx
(16)
y
=
c
h
x
y=chx
y=chx
y
′
=
s
h
x
{y}'=shx
y′=shx
d
(
c
h
x
)
=
s
h
x
d
x
d(chx)=shxdx
d(chx)=shxdx
7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法
(1) 反函数的运算法则: 设
y
=
f
(
x
)
y=f(x)
y=f(x)在点
x
x
x的某邻域内单调连续,在点
x
x
x处可导且
f
′
(
x
)
≠
0
{f}'(x)\ne 0
f′(x)=0,则其反函数在点
x
x
x所对应的
y
y
y处可导,并且有
d
y
d
x
=
1
d
x
d
y
\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}
dxdy=dydx1
(2) 复合函数的运算法则:若
μ
=
φ
(
x
)
\mu =\varphi(x)
μ=φ(x) 在点
x
x
x可导,而
y
=
f
(
μ
)
y=f(\mu)
y=f(μ)在对应点
μ
\mu
μ(
μ
=
φ
(
x
)
\mu =\varphi (x)
μ=φ(x))可导,则复合函数
y
=
f
(
φ
(
x
)
)
y=f(\varphi (x))
y=f(φ(x))在点
x
x
x可导,且
y
′
=
f
′
(
μ
)
⋅
φ
′
(
x
)
{y}'={f}'(\mu )\cdot {\varphi }'(x)
y′=f′(μ)⋅φ′(x)
(3) 隐函数导数
d
y
d
x
\frac{dy}{dx}
dxdy的求法一般有三种方法:
1)方程两边对
x
x
x求导,要记住
y
y
y是
x
x
x的函数,则
y
y
y的函数是
x
x
x的复合函数.例如
1
y
\frac{1}{y}
y1,
y
2
{{y}^{2}}
y2,
l
n
y
ln y
lny,
e
y
{{{e}}^{y}}
ey等均是
x
x
x的复合函数.
对
x
x
x求导应按复合函数连锁法则做.
2)公式法.由
F
(
x
,
y
)
=
0
F(x,y)=0
F(x,y)=0知
d
y
d
x
=
−
F
′
x
(
x
,
y
)
F
′
y
(
x
,
y
)
\frac{dy}{dx}=-\frac{{{{{F}'}}_{x}}(x,y)}{{{{{F}'}}_{y}}(x,y)}
dxdy=−F′y(x,y)F′x(x,y),其中,
F
′
x
(
x
,
y
)
{{{F}'}_{x}}(x,y)
F′x(x,y),
F
′
y
(
x
,
y
)
{{{F}'}_{y}}(x,y)
F′y(x,y)分别表示
F
(
x
,
y
)
F(x,y)
F(x,y)对
x
x
x和
y
y
y的偏导数
3)利用微分形式不变性
8.常用高阶导数公式
(1)
(
a
x
)
(
n
)
=
a
x
ln
n
a
(
a
>
0
)
(
e
x
)
(
n
)
=
e
x
({{a}^{x}}){{\,}^{(n)}}={{a}^{x}}{{\ln }^{n}}a\quad (a>{0})\quad \quad ({{{e}}^{x}}){{\,}^{(n)}}={e}{{\,}^{x}}
(ax)(n)=axlnna(a>0)(ex)(n)=ex
(2)
(
sin
k
x
)
(
n
)
=
k
n
sin
(
k
x
+
n
⋅
π
2
)
(\sin kx{)}{{\,}^{(n)}}={{k}^{n}}\sin (kx+n\cdot \frac{\pi }{{2}})
(sinkx)(n)=knsin(kx+n⋅2π)
(3)
(
cos
k
x
)
(
n
)
=
k
n
cos
(
k
x
+
n
⋅
π
2
)
(\cos kx{)}{{\,}^{(n)}}={{k}^{n}}\cos (kx+n\cdot \frac{\pi }{{2}})
(coskx)(n)=kncos(kx+n⋅2π)
(4)
(
x
m
)
(
n
)
=
m
(
m
−
1
)
⋯
(
m
−
n
+
1
)
x
m
−
n
({{x}^{m}}){{\,}^{(n)}}=m(m-1)\cdots (m-n+1){{x}^{m-n}}
(xm)(n)=m(m−1)⋯(m−n+1)xm−n
(5)
(
ln
x
)
(
n
)
=
(
−
1
)
(
n
−
1
)
(
n
−
1
)
!
x
n
(\ln x){{\,}^{(n)}}={{(-{1})}^{(n-{1})}}\frac{(n-{1})!}{{{x}^{n}}}
(lnx)(n)=(−1)(n−1)xn(n−1)!
(6)莱布尼兹公式:若
u
(
x
)
,
v
(
x
)
u(x)\,,v(x)
u(x),v(x)均
n
n
n阶可导,则
(
u
v
)
(
n
)
=
∑
i
=
0
n
c
n
i
u
(
i
)
v
(
n
−
i
)
{{(uv)}^{(n)}}=\sum\limits_{i={0}}^{n}{c_{n}^{i}{{u}^{(i)}}{{v}^{(n-i)}}}
(uv)(n)=i=0∑ncniu(i)v(n−i),其中
u
(
0
)
=
u
{{u}^{({0})}}=u
u(0)=u,
v
(
0
)
=
v
{{v}^{({0})}}=v
v(0)=v
9.微分中值定理,泰勒公式
Th1:(费马定理)
若函数
f
(
x
)
f(x)
f(x)满足条件:
(1)函数
f
(
x
)
f(x)
f(x)在
x
0
{{x}_{0}}
x0的某邻域内有定义,并且在此邻域内恒有
f
(
x
)
≤
f
(
x
0
)
f(x)\le f({{x}_{0}})
f(x)≤f(x0)或
f
(
x
)
≥
f
(
x
0
)
f(x)\ge f({{x}_{0}})
f(x)≥f(x0),
(2)
f
(
x
)
f(x)
f(x)在
x
0
{{x}_{0}}
x0处可导,则有
f
′
(
x
0
)
=
0
{f}'({{x}_{0}})=0
f′(x0)=0
Th2:(罗尔定理)
设函数
f
(
x
)
f(x)
f(x)满足条件:
(1)在闭区间
[
a
,
b
]
[a,b]
[a,b]上连续;
(2)在
(
a
,
b
)
(a,b)
(a,b)内可导;
(3)
f
(
a
)
=
f
(
b
)
f(a)=f(b)
f(a)=f(b);
则在
(
a
,
b
)
(a,b)
(a,b)内一存在个$xi $,使
f
′
(
ξ
)
=
0
{f}'(\xi )=0
f′(ξ)=0
Th3: (拉格朗日中值定理)
设函数
f
(
x
)
f(x)
f(x)满足条件:
(1)在
[
a
,
b
]
[a,b]
[a,b]上连续;
(2)在
(
a
,
b
)
(a,b)
(a,b)内可导;
则在
(
a
,
b
)
(a,b)
(a,b)内一存在个$\xi $,使
f
(
b
)
−
f
(
a
)
b
−
a
=
f
′
(
ξ
)
\frac{f(b)-f(a)}{b-a}={f}'(\xi )
b−af(b)−f(a)=f′(ξ)
Th4: (柯西中值定理)
设函数
f
(
x
)
f(x)
f(x),
g
(
x
)
g(x)
g(x)满足条件:
(1) 在
[
a
,
b
]
[a,b]
[a,b]上连续;
(2) 在
(
a
,
b
)
(a,b)
(a,b)内可导且
f
′
(
x
)
{f}'(x)
f′(x),
g
′
(
x
)
{g}'(x)
g′(x)均存在,且
g
′
(
x
)
≠
0
{g}'(x)\ne 0
g′(x)=0
则在
(
a
,
b
)
(a,b)
(a,b)内存在一个$\xi $,使
f
(
b
)
−
f
(
a
)
g
(
b
)
−
g
(
a
)
=
f
′
(
ξ
)
g
′
(
ξ
)
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{{f}'(\xi )}{{g}'(\xi )}
g(b)−g(a)f(b)−f(a)=g′(ξ)f′(ξ)
10.洛必达法则
法则Ⅰ (
0
0
\frac{0}{0}
00型)
设函数
f
(
x
)
,
g
(
x
)
f\left( x \right),g\left( x \right)
f(x),g(x)满足条件:
lim
x
→
x
0
f
(
x
)
=
0
,
lim
x
→
x
0
g
(
x
)
=
0
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=0
x→x0limf(x)=0,x→x0limg(x)=0;
f
(
x
)
,
g
(
x
)
f\left( x \right),g\left( x \right)
f(x),g(x)在
x
0
{{x}_{0}}
x0的邻域内可导,(在
x
0
{{x}_{0}}
x0处可除外)且
g
′
(
x
)
≠
0
{g}'\left( x \right)\ne 0
g′(x)=0;
lim
x
→
x
0
f
′
(
x
)
g
′
(
x
)
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}
x→x0limg′(x)f′(x)存在(或$\infty $)。
则:
lim
x
→
x
0
f
(
x
)
g
(
x
)
=
lim
x
→
x
0
f
′
(
x
)
g
′
(
x
)
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}
x→x0limg(x)f(x)=x→x0limg′(x)f′(x)。
法则
I
′
{{I}'}
I′ (
0
0
\frac{0}{0}
00型)设函数
f
(
x
)
,
g
(
x
)
f\left( x \right),g\left( x \right)
f(x),g(x)满足条件:
lim
x
→
∞
f
(
x
)
=
0
,
lim
x
→
∞
g
(
x
)
=
0
\underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=0
x→∞limf(x)=0,x→∞limg(x)=0;
存在一个
X
>
0
X>0
X>0,当
∣
x
∣
>
X
\left| x \right|>X
∣x∣>X时,
f
(
x
)
,
g
(
x
)
f\left( x \right),g\left( x \right)
f(x),g(x)可导,且
g
′
(
x
)
≠
0
{g}'\left( x \right)\ne 0
g′(x)=0;
lim
x
→
x
0
f
′
(
x
)
g
′
(
x
)
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}
x→x0limg′(x)f′(x)存在(或$\infty $)。
则
lim
x
→
x
0
f
(
x
)
g
(
x
)
=
lim
x
→
x
0
f
′
(
x
)
g
′
(
x
)
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}
x→x0limg(x)f(x)=x→x0limg′(x)f′(x)
法则Ⅱ(
∞
∞
\frac{\infty }{\infty }
∞∞ 型) 设函数
f
(
x
)
,
g
(
x
)
f\left( x \right),g\left( x \right)
f(x),g(x) 满足条件:
lim
x
→
x
0
f
(
x
)
=
∞
,
lim
x
→
x
0
g
(
x
)
=
∞
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=\infty,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=\infty
x→x0limf(x)=∞,x→x0limg(x)=∞;
f
(
x
)
,
g
(
x
)
f\left( x \right),g\left( x \right)
f(x),g(x) 在
x
0
{{x}_{0}}
x0 的邻域内可导(在
x
0
{{x}_{0}}
x0处可除外)且
g
′
(
x
)
≠
0
{g}'\left( x \right)\ne 0
g′(x)=0;
lim
x
→
x
0
f
′
(
x
)
g
′
(
x
)
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}
x→x0limg′(x)f′(x) 存在(或$\infty
)
。
则
)。 则
)。则
lim
x
→
x
0
f
(
x
)
g
(
x
)
=
lim
x
→
x
0
f
′
(
x
)
g
′
(
x
)
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}
x→x0limg(x)f(x)=x→x0limg′(x)f′(x)$ 同理法则
I
I
′
{I{I}'}
II′ (
∞
∞
\frac{\infty }{\infty }
∞∞ 型)仿法则
I
′
{{I}'}
I′ 可写出。
11.泰勒公式
设函数
f
(
x
)
f(x)
f(x)在点
x
0
{{x}_{0}}
x0处的某邻域内具有
n
+
1
n+1
n+1阶导数,则对该邻域内异于
x
0
{{x}_{0}}
x0的任意点
x
x
x,在
x
0
{{x}_{0}}
x0与
x
x
x之间至少存在
一个
ξ
\xi
ξ,使得:
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
+
1
2
!
f
′
′
(
x
0
)
(
x
−
x
0
)
2
+
⋯
f(x)=f({{x}_{0}})+{f}'({{x}_{0}})(x-{{x}_{0}})+\frac{1}{2!}{f}''({{x}_{0}}){{(x-{{x}_{0}})}^{2}}+\cdots
f(x)=f(x0)+f′(x0)(x−x0)+2!1f′′(x0)(x−x0)2+⋯
+
f
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
+
R
n
(
x
)
+\frac{{{f}^{(n)}}({{x}_{0}})}{n!}{{(x-{{x}_{0}})}^{n}}+{{R}_{n}}(x)
+n!f(n)(x0)(x−x0)n+Rn(x)
其中
R
n
(
x
)
=
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
(
x
−
x
0
)
n
+
1
{{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{(x-{{x}_{0}})}^{n+1}}
Rn(x)=(n+1)!f(n+1)(ξ)(x−x0)n+1称为
f
(
x
)
f(x)
f(x)在点
x
0
{{x}_{0}}
x0处的
n
n
n阶泰勒余项。
令
x
0
=
0
{{x}_{0}}=0
x0=0,则
n
n
n阶泰勒公式
f
(
x
)
=
f
(
0
)
+
f
′
(
0
)
x
+
1
2
!
f
′
′
(
0
)
x
2
+
⋯
+
f
(
n
)
(
0
)
n
!
x
n
+
R
n
(
x
)
f(x)=f(0)+{f}'(0)x+\frac{1}{2!}{f}''(0){{x}^{2}}+\cdots +\frac{{{f}^{(n)}}(0)}{n!}{{x}^{n}}+{{R}_{n}}(x)
f(x)=f(0)+f′(0)x+2!1f′′(0)x2+⋯+n!f(n)(0)xn+Rn(x)……(1)
其中
R
n
(
x
)
=
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
x
n
+
1
{{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{x}^{n+1}}
Rn(x)=(n+1)!f(n+1)(ξ)xn+1,$\xi
在
0
与
在0与
在0与x$之间.(1)式称为麦克劳林公式
常用五种函数在
x
0
=
0
{{x}_{0}}=0
x0=0处的泰勒公式
(1)
e
x
=
1
+
x
+
1
2
!
x
2
+
⋯
+
1
n
!
x
n
+
x
n
+
1
(
n
+
1
)
!
e
ξ
{{{e}}^{x}}=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+\frac{{{x}^{n+1}}}{(n+1)!}{{e}^{\xi }}
ex=1+x+2!1x2+⋯+n!1xn+(n+1)!xn+1eξ
或
=
1
+
x
+
1
2
!
x
2
+
⋯
+
1
n
!
x
n
+
o
(
x
n
)
=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+o({{x}^{n}})
=1+x+2!1x2+⋯+n!1xn+o(xn)
(2)
sin
x
=
x
−
1
3
!
x
3
+
⋯
+
x
n
n
!
sin
n
π
2
+
x
n
+
1
(
n
+
1
)
!
sin
(
ξ
+
n
+
1
2
π
)
\sin x=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\sin (\xi +\frac{n+1}{2}\pi )
sinx=x−3!1x3+⋯+n!xnsin2nπ+(n+1)!xn+1sin(ξ+2n+1π)
或
=
x
−
1
3
!
x
3
+
⋯
+
x
n
n
!
sin
n
π
2
+
o
(
x
n
)
=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+o({{x}^{n}})
=x−3!1x3+⋯+n!xnsin2nπ+o(xn)
(3)
cos
x
=
1
−
1
2
!
x
2
+
⋯
+
x
n
n
!
cos
n
π
2
+
x
n
+
1
(
n
+
1
)
!
cos
(
ξ
+
n
+
1
2
π
)
\cos x=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\cos (\xi +\frac{n+1}{2}\pi )
cosx=1−2!1x2+⋯+n!xncos2nπ+(n+1)!xn+1cos(ξ+2n+1π)
或
=
1
−
1
2
!
x
2
+
⋯
+
x
n
n
!
cos
n
π
2
+
o
(
x
n
)
=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+o({{x}^{n}})
=1−2!1x2+⋯+n!xncos2nπ+o(xn)
(4)
ln
(
1
+
x
)
=
x
−
1
2
x
2
+
1
3
x
3
−
⋯
+
(
−
1
)
n
−
1
x
n
n
+
(
−
1
)
n
x
n
+
1
(
n
+
1
)
(
1
+
ξ
)
n
+
1
\ln (1+x)=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+\frac{{{(-1)}^{n}}{{x}^{n+1}}}{(n+1){{(1+\xi )}^{n+1}}}
ln(1+x)=x−21x2+31x3−⋯+(−1)n−1nxn+(n+1)(1+ξ)n+1(−1)nxn+1
或
=
x
−
1
2
x
2
+
1
3
x
3
−
⋯
+
(
−
1
)
n
−
1
x
n
n
+
o
(
x
n
)
=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+o({{x}^{n}})
=x−21x2+31x3−⋯+(−1)n−1nxn+o(xn)
(5)
(
1
+
x
)
m
=
1
+
m
x
+
m
(
m
−
1
)
2
!
x
2
+
⋯
+
m
(
m
−
1
)
⋯
(
m
−
n
+
1
)
n
!
x
n
{{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots +\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}}
(1+x)m=1+mx+2!m(m−1)x2+⋯+n!m(m−1)⋯(m−n+1)xn
+
m
(
m
−
1
)
⋯
(
m
−
n
+
1
)
(
n
+
1
)
!
x
n
+
1
(
1
+
ξ
)
m
−
n
−
1
+\frac{m(m-1)\cdots (m-n+1)}{(n+1)!}{{x}^{n+1}}{{(1+\xi )}^{m-n-1}}
+(n+1)!m(m−1)⋯(m−n+1)xn+1(1+ξ)m−n−1
或
(
1
+
x
)
m
=
1
+
m
x
+
m
(
m
−
1
)
2
!
x
2
+
⋯
{{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots
(1+x)m=1+mx+2!m(m−1)x2+⋯ ,
+
m
(
m
−
1
)
⋯
(
m
−
n
+
1
)
n
!
x
n
+
o
(
x
n
)
+\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}}+o({{x}^{n}})
+n!m(m−1)⋯(m−n+1)xn+o(xn)
12.函数单调性的判断
Th1: 设函数
f
(
x
)
f(x)
f(x)在
(
a
,
b
)
(a,b)
(a,b)区间内可导,如果对
∀
x
∈
(
a
,
b
)
\forall x\in (a,b)
∀x∈(a,b),都有
f
′
(
x
)
>
0
f\,'(x)>0
f′(x)>0(或
f
′
(
x
)
<
0
f\,'(x)<0
f′(x)<0),则函数
f
(
x
)
f(x)
f(x)在
(
a
,
b
)
(a,b)
(a,b)内是单调增加的(或单调减少)
Th2: (取极值的必要条件)设函数
f
(
x
)
f(x)
f(x)在
x
0
{{x}_{0}}
x0处可导,且在
x
0
{{x}_{0}}
x0处取极值,则
f
′
(
x
0
)
=
0
f\,'({{x}_{0}})=0
f′(x0)=0。
Th3: (取极值的第一充分条件)设函数
f
(
x
)
f(x)
f(x)在
x
0
{{x}_{0}}
x0的某一邻域内可微,且
f
′
(
x
0
)
=
0
f\,'({{x}_{0}})=0
f′(x0)=0(或
f
(
x
)
f(x)
f(x)在
x
0
{{x}_{0}}
x0处连续,但
f
′
(
x
0
)
f\,'({{x}_{0}})
f′(x0)不存在。)
(1)若当
x
x
x经过
x
0
{{x}_{0}}
x0时,
f
′
(
x
)
f\,'(x)
f′(x)由“+”变“-”,则
f
(
x
0
)
f({{x}_{0}})
f(x0)为极大值;
(2)若当
x
x
x经过
x
0
{{x}_{0}}
x0时,
f
′
(
x
)
f\,'(x)
f′(x)由“-”变“+”,则
f
(
x
0
)
f({{x}_{0}})
f(x0)为极小值;
(3)若
f
′
(
x
)
f\,'(x)
f′(x)经过
x
=
x
0
x={{x}_{0}}
x=x0的两侧不变号,则
f
(
x
0
)
f({{x}_{0}})
f(x0)不是极值。
Th4: (取极值的第二充分条件)设
f
(
x
)
f(x)
f(x)在点
x
0
{{x}_{0}}
x0处有
f
′
′
(
x
)
≠
0
f''(x)\ne 0
f′′(x)=0,且
f
′
(
x
0
)
=
0
f\,'({{x}_{0}})=0
f′(x0)=0,则 当
f
′
′
(
x
0
)
<
0
f'\,'({{x}_{0}})<0
f′′(x0)<0时,
f
(
x
0
)
f({{x}_{0}})
f(x0)为极大值;
当
f
′
′
(
x
0
)
>
0
f'\,'({{x}_{0}})>0
f′′(x0)>0时,
f
(
x
0
)
f({{x}_{0}})
f(x0)为极小值。
注:如果
f
′
′
(
x
0
)
<
0
f'\,'({{x}_{0}})<0
f′′(x0)<0,此方法失效。
13.渐近线的求法
(1)水平渐近线 若
lim
x
→
+
∞
f
(
x
)
=
b
\underset{x\to +\infty }{\mathop{\lim }}\,f(x)=b
x→+∞limf(x)=b,或
lim
x
→
−
∞
f
(
x
)
=
b
\underset{x\to -\infty }{\mathop{\lim }}\,f(x)=b
x→−∞limf(x)=b,则
y
=
b
y=b
y=b称为函数
y
=
f
(
x
)
y=f(x)
y=f(x)的水平渐近线。
(2)铅直渐近线 若
lim
x
→
x
0
−
f
(
x
)
=
∞
\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f(x)=\infty
x→x0−limf(x)=∞,或
lim
x
→
x
0
+
f
(
x
)
=
∞
\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f(x)=\infty
x→x0+limf(x)=∞,则
x
=
x
0
x={{x}_{0}}
x=x0称为
y
=
f
(
x
)
y=f(x)
y=f(x)的铅直渐近线。
(3)斜渐近线 若
a
=
lim
x
→
∞
f
(
x
)
x
,
b
=
lim
x
→
∞
[
f
(
x
)
−
a
x
]
a=\underset{x\to \infty }{\mathop{\lim }}\,\frac{f(x)}{x},\quad b=\underset{x\to \infty }{\mathop{\lim }}\,[f(x)-ax]
a=x→∞limxf(x),b=x→∞lim[f(x)−ax],则
y
=
a
x
+
b
y=ax+b
y=ax+b称为
y
=
f
(
x
)
y=f(x)
y=f(x)的斜渐近线。
14.函数凹凸性的判断
Th1: (凹凸性的判别定理)若在I上
f
′
′
(
x
)
<
0
f''(x)<0
f′′(x)<0(或
f
′
′
(
x
)
>
0
f''(x)>0
f′′(x)>0),则
f
(
x
)
f(x)
f(x)在I上是凸的(或凹的)。
Th2: (拐点的判别定理1)若在
x
0
{{x}_{0}}
x0处
f
′
′
(
x
)
=
0
f''(x)=0
f′′(x)=0,(或
f
′
′
(
x
)
f''(x)
f′′(x)不存在),当
x
x
x变动经过
x
0
{{x}_{0}}
x0时,
f
′
′
(
x
)
f''(x)
f′′(x)变号,则
(
x
0
,
f
(
x
0
)
)
({{x}_{0}},f({{x}_{0}}))
(x0,f(x0))为拐点。
Th3: (拐点的判别定理2)设
f
(
x
)
f(x)
f(x)在
x
0
{{x}_{0}}
x0点的某邻域内有三阶导数,且
f
′
′
(
x
)
=
0
f''(x)=0
f′′(x)=0,
f
′
′
′
(
x
)
≠
0
f'''(x)\ne 0
f′′′(x)=0,则
(
x
0
,
f
(
x
0
)
)
({{x}_{0}},f({{x}_{0}}))
(x0,f(x0))为拐点。
15.弧微分
d
S
=
1
+
y
′
2
d
x
dS=\sqrt{1+y{{'}^{2}}}dx
dS=1+y′2
dx
16.曲率
曲线
y
=
f
(
x
)
y=f(x)
y=f(x)在点
(
x
,
y
)
(x,y)
(x,y)处的曲率
k
=
∣
y
′
′
∣
(
1
+
y
′
2
)
3
2
k=\frac{\left| y'' \right|}{{{(1+y{{'}^{2}})}^{\tfrac{3}{2}}}}
k=(1+y′2)23∣y′′∣。
对于参数方程 KaTeX parse error: No such environment: align at position 14: \left\{\begin{̲a̲l̲i̲g̲n̲}̲&x=\varphi(t)\\…
k
=
∣
φ
′
(
t
)
ψ
′
′
(
t
)
−
φ
′
′
(
t
)
ψ
′
(
t
)
∣
[
φ
′
2
(
t
)
+
ψ
′
2
(
t
)
]
3
2
k=\frac{\left| \varphi '(t)\psi ''(t)-\varphi ''(t)\psi '(t) \right|}{{{[\varphi {{'}^{2}}(t)+\psi {{'}^{2}}(t)]}^{\tfrac{3}{2}}}}
k=[φ′2(t)+ψ′2(t)]23∣φ′(t)ψ′′(t)−φ′′(t)ψ′(t)∣ 。
17.曲率半径
曲线在点
M
M
M处的曲率
k
(
k
≠
0
)
k(k\ne 0)
k(k=0)与曲线在点
M
M
M处的曲率半径
ρ
\rho
ρ有如下关系:
ρ
=
1
k
\rho =\frac{1}{k}
ρ=k1。
线性代数
行列式
1.行列式按行(列)展开定理
(1) 设
A
=
(
a
i
j
)
n
×
n
A = ( a_{{ij}} )_{n \times n}
A=(aij)n×n,则:
a
i
1
A
j
1
+
a
i
2
A
j
2
+
⋯
+
a
i
n
A
j
n
=
{
∣
A
∣
,
i
=
j
0
,
i
≠
j
a_{i1}A_{j1} +a_{i2}A_{j2} + \cdots + a_{{in}}A_{{jn}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases}
ai1Aj1+ai2Aj2+⋯+ainAjn={∣A∣,i=j0,i=j
或
a
1
i
A
1
j
+
a
2
i
A
2
j
+
⋯
+
a
n
i
A
n
j
=
{
∣
A
∣
,
i
=
j
0
,
i
≠
j
a_{1i}A_{1j} + a_{2i}A_{2j} + \cdots + a_{{ni}}A_{{nj}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases}
a1iA1j+a2iA2j+⋯+aniAnj={∣A∣,i=j0,i=j即
A
A
∗
=
A
∗
A
=
∣
A
∣
E
,
AA^{*} = A^{*}A = \left| A \right|E,
AA∗=A∗A=∣A∣E,其中:
A
∗
=
(
A
11
A
12
…
A
1
n
A
21
A
22
…
A
2
n
…
…
…
…
A
n
1
A
n
2
…
A
n
n
)
=
(
A
j
i
)
=
(
A
i
j
)
T
A^{*} = \begin{pmatrix} A_{11} & A_{12} & \ldots & A_{1n} \\ A_{21} & A_{22} & \ldots & A_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ A_{n1} & A_{n2} & \ldots & A_{{nn}} \\ \end{pmatrix} = (A_{{ji}}) = {(A_{{ij}})}^{T}
A∗=⎝⎜⎜⎛A11A21…An1A12A22…An2…………A1nA2n…Ann⎠⎟⎟⎞=(Aji)=(Aij)T
D
n
=
∣
1
1
…
1
x
1
x
2
…
x
n
…
…
…
…
x
1
n
−
1
x
2
n
−
1
…
x
n
n
−
1
∣
=
∏
1
≤
j
<
i
≤
n
(
x
i
−
x
j
)
D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n - 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j})
Dn=∣∣∣∣∣∣∣∣1x1…x1n−11x2…x2n−1…………1xn…xnn−1∣∣∣∣∣∣∣∣=∏1≤j<i≤n(xi−xj)
(2) 设
A
,
B
A,B
A,B为
n
n
n阶方阵,则
∣
A
B
∣
=
∣
A
∣
∣
B
∣
=
∣
B
∣
∣
A
∣
=
∣
B
A
∣
\left| {AB} \right| = \left| A \right|\left| B \right| = \left| B \right|\left| A \right| = \left| {BA} \right|
∣AB∣=∣A∣∣B∣=∣B∣∣A∣=∣BA∣,但
∣
A
±
B
∣
=
∣
A
∣
±
∣
B
∣
\left| A \pm B \right| = \left| A \right| \pm \left| B \right|
∣A±B∣=∣A∣±∣B∣不一定成立。
(3)
∣
k
A
∣
=
k
n
∣
A
∣
\left| {kA} \right| = k^{n}\left| A \right|
∣kA∣=kn∣A∣,
A
A
A为
n
n
n阶方阵。
(4) 设
A
A
A为
n
n
n阶方阵,
∣
A
T
∣
=
∣
A
∣
;
∣
A
−
1
∣
=
∣
A
∣
−
1
|A^{T}| = |A|;|A^{- 1}| = |A|^{- 1}
∣AT∣=∣A∣;∣A−1∣=∣A∣−1(若
A
A
A可逆),
∣
A
∗
∣
=
∣
A
∣
n
−
1
|A^{*}| = |A|^{n - 1}
∣A∗∣=∣A∣n−1
n
≥
2
n \geq 2
n≥2
(5)
∣
A
O
O
B
∣
=
∣
A
C
O
B
∣
=
∣
A
O
C
B
∣
=
∣
A
∣
∣
B
∣
\left| \begin{matrix} & {A\quad O} \\ & {O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix} & {A\quad C} \\ & {O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix} & {A\quad O} \\ & {C\quad B} \\ \end{matrix} \right| =| A||B|
∣∣∣∣AOOB∣∣∣∣=∣∣∣∣ACOB∣∣∣∣=∣∣∣∣AOCB∣∣∣∣=∣A∣∣B∣
,
A
,
B
A,B
A,B为方阵,但
∣
O
A
m
×
m
B
n
×
n
O
∣
=
(
−
1
)
m
n
∣
A
∣
∣
B
∣
\left| \begin{matrix} {O} & A_{m \times m} \\ B_{n \times n} & { O} \\ \end{matrix} \right| = ({- 1)}^{{mn}}|A||B|
∣∣∣∣OBn×nAm×mO∣∣∣∣=(−1)mn∣A∣∣B∣ 。
(6) 范德蒙行列式
D
n
=
∣
1
1
…
1
x
1
x
2
…
x
n
…
…
…
…
x
1
n
−
1
x
2
n
1
…
x
n
n
−
1
∣
=
∏
1
≤
j
<
i
≤
n
(
x
i
−
x
j
)
D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j})
Dn=∣∣∣∣∣∣∣∣1x1…x1n−11x2…x2n1…………1xn…xnn−1∣∣∣∣∣∣∣∣=∏1≤j<i≤n(xi−xj)
设
A
A
A是
n
n
n阶方阵,
λ
i
(
i
=
1
,
2
⋯
,
n
)
\lambda_{i}(i = 1,2\cdots,n)
λi(i=1,2⋯,n)是
A
A
A的
n
n
n个特征值,则
∣
A
∣
=
∏
i
=
1
n
λ
i
|A| = \prod_{i = 1}^{n}\lambda_{i}
∣A∣=∏i=1nλi
矩阵
矩阵:
m
×
n
m \times n
m×n个数
a
i
j
a_{{ij}}
aij排成
m
m
m行
n
n
n列的表格
[
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋯
⋯
⋯
⋯
⋯
a
m
1
a
m
2
⋯
a
m
n
]
\begin{bmatrix} a_{11}\quad a_{12}\quad\cdots\quad a_{1n} \\ a_{21}\quad a_{22}\quad\cdots\quad a_{2n} \\ \quad\cdots\cdots\cdots\cdots\cdots \\ a_{m1}\quad a_{m2}\quad\cdots\quad a_{{mn}} \\ \end{bmatrix}
⎣⎢⎢⎡a11a12⋯a1na21a22⋯a2n⋯⋯⋯⋯⋯am1am2⋯amn⎦⎥⎥⎤ 称为矩阵,简记为
A
A
A,或者
(
a
i
j
)
m
×
n
\left( a_{{ij}} \right)_{m \times n}
(aij)m×n 。若
m
=
n
m = n
m=n,则称
A
A
A是
n
n
n阶矩阵或
n
n
n阶方阵。
矩阵的线性运算
1.矩阵的加法
设
A
=
(
a
i
j
)
,
B
=
(
b
i
j
)
A = (a_{{ij}}),B = (b_{{ij}})
A=(aij),B=(bij)是两个
m
×
n
m \times n
m×n矩阵,则
m
×
n
m \times n
m×n 矩阵
C
=
c
i
j
)
=
a
i
j
+
b
i
j
C = c_{{ij}}) = a_{{ij}} + b_{{ij}}
C=cij)=aij+bij称为矩阵
A
A
A与
B
B
B的和,记为
A
+
B
=
C
A + B = C
A+B=C 。
2.矩阵的数乘
设
A
=
(
a
i
j
)
A = (a_{{ij}})
A=(aij)是
m
×
n
m \times n
m×n矩阵,
k
k
k是一个常数,则
m
×
n
m \times n
m×n矩阵
(
k
a
i
j
)
(ka_{{ij}})
(kaij)称为数
k
k
k与矩阵
A
A
A的数乘,记为
k
A
{kA}
kA。
3.矩阵的乘法
设
A
=
(
a
i
j
)
A = (a_{{ij}})
A=(aij)是
m
×
n
m \times n
m×n矩阵,
B
=
(
b
i
j
)
B = (b_{{ij}})
B=(bij)是
n
×
s
n \times s
n×s矩阵,那么
m
×
s
m \times s
m×s矩阵
C
=
(
c
i
j
)
C = (c_{{ij}})
C=(cij),其中
c
i
j
=
a
i
1
b
1
j
+
a
i
2
b
2
j
+
⋯
+
a
i
n
b
n
j
=
∑
k
=
1
n
a
i
k
b
k
j
c_{{ij}} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{{in}}b_{{nj}} = \sum_{k =1}^{n}{a_{{ik}}b_{{kj}}}
cij=ai1b1j+ai2b2j+⋯+ainbnj=∑k=1naikbkj称为
A
B
{AB}
AB的乘积,记为
C
=
A
B
C = AB
C=AB 。
4.
A
T
\mathbf{A}^{\mathbf{T}}
AT、
A
−
1
\mathbf{A}^{\mathbf{-1}}
A−1、
A
∗
\mathbf{A}^{\mathbf{*}}
A∗三者之间的关系
(1)
(
A
T
)
T
=
A
,
(
A
B
)
T
=
B
T
A
T
,
(
k
A
)
T
=
k
A
T
,
(
A
±
B
)
T
=
A
T
±
B
T
{(A^{T})}^{T} = A,{(AB)}^{T} = B^{T}A^{T},{(kA)}^{T} = kA^{T},{(A \pm B)}^{T} = A^{T} \pm B^{T}
(AT)T=A,(AB)T=BTAT,(kA)T=kAT,(A±B)T=AT±BT
(2)
(
A
−
1
)
−
1
=
A
,
(
A
B
)
−
1
=
B
−
1
A
−
1
,
(
k
A
)
−
1
=
1
k
A
−
1
,
\left( A^{- 1} \right)^{- 1} = A,\left( {AB} \right)^{- 1} = B^{- 1}A^{- 1},\left( {kA} \right)^{- 1} = \frac{1}{k}A^{- 1},
(A−1)−1=A,(AB)−1=B−1A−1,(kA)−1=k1A−1,
但
(
A
±
B
)
−
1
=
A
−
1
±
B
−
1
{(A \pm B)}^{- 1} = A^{- 1} \pm B^{- 1}
(A±B)−1=A−1±B−1不一定成立。
(3)
(
A
∗
)
∗
=
∣
A
∣
n
−
2
A
(
n
≥
3
)
\left( A^{*} \right)^{*} = |A|^{n - 2}\ A\ \ (n \geq 3)
(A∗)∗=∣A∣n−2 A (n≥3),
(
A
B
)
∗
=
B
∗
A
∗
,
\left({AB} \right)^{*} = B^{*}A^{*},
(AB)∗=B∗A∗,
(
k
A
)
∗
=
k
n
−
1
A
∗
(
n
≥
2
)
\left( {kA} \right)^{*} = k^{n -1}A^{*}{\ \ }\left( n \geq 2 \right)
(kA)∗=kn−1A∗ (n≥2)
但
(
A
±
B
)
∗
=
A
∗
±
B
∗
\left( A \pm B \right)^{*} = A^{*} \pm B^{*}
(A±B)∗=A∗±B∗不一定成立。
(4)
(
A
−
1
)
T
=
(
A
T
)
−
1
,
(
A
−
1
)
∗
=
(
A
A
∗
)
−
1
,
(
A
∗
)
T
=
(
A
T
)
∗
{(A^{- 1})}^{T} = {(A^{T})}^{- 1},\ \left( A^{- 1} \right)^{*} ={(AA^{*})}^{- 1},{(A^{*})}^{T} = \left( A^{T} \right)^{*}
(A−1)T=(AT)−1, (A−1)∗=(AA∗)−1,(A∗)T=(AT)∗
5.有关
A
∗
\mathbf{A}^{\mathbf{*}}
A∗的结论
(1)
A
A
∗
=
A
∗
A
=
∣
A
∣
E
AA^{*} = A^{*}A = |A|E
AA∗=A∗A=∣A∣E
(2)
∣
A
∗
∣
=
∣
A
∣
n
−
1
(
n
≥
2
)
,
(
k
A
)
∗
=
k
n
−
1
A
∗
,
(
A
∗
)
∗
=
∣
A
∣
n
−
2
A
(
n
≥
3
)
|A^{*}| = |A|^{n - 1}\ (n \geq 2),\ \ \ \ {(kA)}^{*} = k^{n -1}A^{*},{{\ \ }\left( A^{*} \right)}^{*} = |A|^{n - 2}A(n \geq 3)
∣A∗∣=∣A∣n−1 (n≥2), (kA)∗=kn−1A∗, (A∗)∗=∣A∣n−2A(n≥3)
(3) 若
A
A
A可逆,则
A
∗
=
∣
A
∣
A
−
1
,
(
A
∗
)
∗
=
1
∣
A
∣
A
A^{*} = |A|A^{- 1},{(A^{*})}^{*} = \frac{1}{|A|}A
A∗=∣A∣A−1,(A∗)∗=∣A∣1A
(4) 若
A
A
A为
n
n
n阶方阵,则:
r
(
A
∗
)
=
{
n
,
r
(
A
)
=
n
1
,
r
(
A
)
=
n
−
1
0
,
r
(
A
)
<
n
−
1
r(A^*)=\begin{cases}n,\quad r(A)=n\\ 1,\quad r(A)=n-1\\ 0,\quad r(A)<n-1\end{cases}
r(A∗)=⎩⎪⎨⎪⎧n,r(A)=n1,r(A)=n−10,r(A)<n−1
6.有关
A
−
1
\mathbf{A}^{\mathbf{- 1}}
A−1的结论
A
A
A可逆
⇔
A
B
=
E
;
⇔
∣
A
∣
≠
0
;
⇔
r
(
A
)
=
n
;
\Leftrightarrow AB = E; \Leftrightarrow |A| \neq 0; \Leftrightarrow r(A) = n;
⇔AB=E;⇔∣A∣=0;⇔r(A)=n;
⇔
A
\Leftrightarrow A
⇔A可以表示为初等矩阵的乘积;
⇔
A
;
⇔
A
x
=
0
\Leftrightarrow A;\Leftrightarrow Ax = 0
⇔A;⇔Ax=0。
7.有关矩阵秩的结论
(1) 秩
r
(
A
)
r(A)
r(A)=行秩=列秩;
(2)
r
(
A
m
×
n
)
≤
min
(
m
,
n
)
;
r(A_{m \times n}) \leq \min(m,n);
r(Am×n)≤min(m,n);
(3)
A
≠
0
⇒
r
(
A
)
≥
1
A \neq 0 \Rightarrow r(A) \geq 1
A=0⇒r(A)≥1;
(4)
r
(
A
±
B
)
≤
r
(
A
)
+
r
(
B
)
;
r(A \pm B) \leq r(A) + r(B);
r(A±B)≤r(A)+r(B);
(5) 初等变换不改变矩阵的秩
(6)
r
(
A
)
+
r
(
B
)
−
n
≤
r
(
A
B
)
≤
min
(
r
(
A
)
,
r
(
B
)
)
,
r(A) + r(B) - n \leq r(AB) \leq \min(r(A),r(B)),
r(A)+r(B)−n≤r(AB)≤min(r(A),r(B)),特别若
A
B
=
O
AB = O
AB=O
则:
r
(
A
)
+
r
(
B
)
≤
n
r(A) + r(B) \leq n
r(A)+r(B)≤n
(7) 若
A
−
1
A^{- 1}
A−1存在
⇒
r
(
A
B
)
=
r
(
B
)
;
\Rightarrow r(AB) = r(B);
⇒r(AB)=r(B); 若
B
−
1
B^{- 1}
B−1存在
⇒
r
(
A
B
)
=
r
(
A
)
;
\Rightarrow r(AB) = r(A);
⇒r(AB)=r(A);
若
r
(
A
m
×
n
)
=
n
⇒
r
(
A
B
)
=
r
(
B
)
;
r(A_{m \times n}) = n \Rightarrow r(AB) = r(B);
r(Am×n)=n⇒r(AB)=r(B); 若
r
(
A
m
×
s
)
=
n
⇒
r
(
A
B
)
=
r
(
A
)
r(A_{m \times s}) = n\Rightarrow r(AB) = r\left( A \right)
r(Am×s)=n⇒r(AB)=r(A)。
(8)
r
(
A
m
×
s
)
=
n
⇔
A
x
=
0
r(A_{m \times s}) = n \Leftrightarrow Ax = 0
r(Am×s)=n⇔Ax=0只有零解
8.分块求逆公式
(
A
O
O
B
)
−
1
=
(
A
−
1
O
O
B
−
1
)
\begin{pmatrix} A & O \\ O & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{-1} & O \\ O & B^{- 1} \\ \end{pmatrix}
(AOOB)−1=(A−1OOB−1);
(
A
C
O
B
)
−
1
=
(
A
−
1
−
A
−
1
C
B
−
1
O
B
−
1
)
\begin{pmatrix} A & C \\ O & B \\\end{pmatrix}^{- 1} = \begin{pmatrix} A^{- 1}& - A^{- 1}CB^{- 1} \\ O & B^{- 1} \\ \end{pmatrix}
(AOCB)−1=(A−1O−A−1CB−1B−1);
(
A
O
C
B
)
−
1
=
(
A
−
1
O
−
B
−
1
C
A
−
1
B
−
1
)
\begin{pmatrix} A & O \\ C & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{- 1}&{O} \\ - B^{- 1}CA^{- 1} & B^{- 1} \\\end{pmatrix}
(ACOB)−1=(A−1−B−1CA−1OB−1);
(
O
A
B
O
)
−
1
=
(
O
B
−
1
A
−
1
O
)
\begin{pmatrix} O & A \\ B & O \\ \end{pmatrix}^{- 1} =\begin{pmatrix} O & B^{- 1} \\ A^{- 1} & O \\ \end{pmatrix}
(OBAO)−1=(OA−1B−1O)
这里
A
A
A,
B
B
B均为可逆方阵。
向量
1.有关向量组的线性表示
(1)
α
1
,
α
2
,
⋯
,
α
s
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
α1,α2,⋯,αs线性相关
⇔
\Leftrightarrow
⇔至少有一个向量可以用其余向量线性表示。
(2)
α
1
,
α
2
,
⋯
,
α
s
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
α1,α2,⋯,αs线性无关,
α
1
,
α
2
,
⋯
,
α
s
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
α1,α2,⋯,αs,
β
\beta
β线性相关
⇔
β
\Leftrightarrow \beta
⇔β可以由
α
1
,
α
2
,
⋯
,
α
s
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
α1,α2,⋯,αs唯一线性表示。
(3)
β
\beta
β可以由
α
1
,
α
2
,
⋯
,
α
s
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
α1,α2,⋯,αs线性表示
⇔
r
(
α
1
,
α
2
,
⋯
,
α
s
)
=
r
(
α
1
,
α
2
,
⋯
,
α
s
,
β
)
\Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) =r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta)
⇔r(α1,α2,⋯,αs)=r(α1,α2,⋯,αs,β) 。
2.有关向量组的线性相关性
(1)部分相关,整体相关;整体无关,部分无关.
(2) ①
n
n
n个
n
n
n维向量
α
1
,
α
2
⋯
α
n
\alpha_{1},\alpha_{2}\cdots\alpha_{n}
α1,α2⋯αn线性无关
⇔
∣
[
α
1
α
2
⋯
α
n
]
∣
≠
0
\Leftrightarrow \left|\left\lbrack \alpha_{1}\alpha_{2}\cdots\alpha_{n} \right\rbrack \right| \neq0
⇔∣[α1α2⋯αn]∣=0,
n
n
n个
n
n
n维向量
α
1
,
α
2
⋯
α
n
\alpha_{1},\alpha_{2}\cdots\alpha_{n}
α1,α2⋯αn线性相关
⇔
∣
[
α
1
,
α
2
,
⋯
,
α
n
]
∣
=
0
\Leftrightarrow |\lbrack\alpha_{1},\alpha_{2},\cdots,\alpha_{n}\rbrack| = 0
⇔∣[α1,α2,⋯,αn]∣=0
。
②
n
+
1
n + 1
n+1个
n
n
n维向量线性相关。
③ 若
α
1
,
α
2
⋯
α
S
\alpha_{1},\alpha_{2}\cdots\alpha_{S}
α1,α2⋯αS线性无关,则添加分量后仍线性无关;或一组向量线性相关,去掉某些分量后仍线性相关。
3.有关向量组的线性表示
(1)
α
1
,
α
2
,
⋯
,
α
s
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
α1,α2,⋯,αs线性相关
⇔
\Leftrightarrow
⇔至少有一个向量可以用其余向量线性表示。
(2)
α
1
,
α
2
,
⋯
,
α
s
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
α1,α2,⋯,αs线性无关,
α
1
,
α
2
,
⋯
,
α
s
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
α1,α2,⋯,αs,
β
\beta
β线性相关
⇔
β
\Leftrightarrow\beta
⇔β 可以由
α
1
,
α
2
,
⋯
,
α
s
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
α1,α2,⋯,αs唯一线性表示。
(3)
β
\beta
β可以由
α
1
,
α
2
,
⋯
,
α
s
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
α1,α2,⋯,αs线性表示
⇔
r
(
α
1
,
α
2
,
⋯
,
α
s
)
=
r
(
α
1
,
α
2
,
⋯
,
α
s
,
β
)
\Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) =r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta)
⇔r(α1,α2,⋯,αs)=r(α1,α2,⋯,αs,β)
4.向量组的秩与矩阵的秩之间的关系
设
r
(
A
m
×
n
)
=
r
r(A_{m \times n}) =r
r(Am×n)=r,则
A
A
A的秩
r
(
A
)
r(A)
r(A)与
A
A
A的行列向量组的线性相关性关系为:
(1) 若
r
(
A
m
×
n
)
=
r
=
m
r(A_{m \times n}) = r = m
r(Am×n)=r=m,则
A
A
A的行向量组线性无关。
(2) 若
r
(
A
m
×
n
)
=
r
<
m
r(A_{m \times n}) = r < m
r(Am×n)=r<m,则
A
A
A的行向量组线性相关。
(3) 若
r
(
A
m
×
n
)
=
r
=
n
r(A_{m \times n}) = r = n
r(Am×n)=r=n,则
A
A
A的列向量组线性无关。
(4) 若
r
(
A
m
×
n
)
=
r
<
n
r(A_{m \times n}) = r < n
r(Am×n)=r<n,则
A
A
A的列向量组线性相关。
5.
n
\mathbf{n}
n维向量空间的基变换公式及过渡矩阵
若
α
1
,
α
2
,
⋯
,
α
n
\alpha_{1},\alpha_{2},\cdots,\alpha_{n}
α1,α2,⋯,αn与
β
1
,
β
2
,
⋯
,
β
n
\beta_{1},\beta_{2},\cdots,\beta_{n}
β1,β2,⋯,βn是向量空间
V
V
V的两组基,则基变换公式为:
(
β
1
,
β
2
,
⋯
,
β
n
)
=
(
α
1
,
α
2
,
⋯
,
α
n
)
[
c
11
c
12
⋯
c
1
n
c
21
c
22
⋯
c
2
n
⋯
⋯
⋯
⋯
c
n
1
c
n
2
⋯
c
n
n
]
=
(
α
1
,
α
2
,
⋯
,
α
n
)
C
(\beta_{1},\beta_{2},\cdots,\beta_{n}) = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})\begin{bmatrix} c_{11}& c_{12}& \cdots & c_{1n} \\ c_{21}& c_{22}&\cdots & c_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ c_{n1}& c_{n2} & \cdots & c_{{nn}} \\\end{bmatrix} = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})C
(β1,β2,⋯,βn)=(α1,α2,⋯,αn)⎣⎢⎢⎡c11c21⋯cn1c12c22⋯cn2⋯⋯⋯⋯c1nc2n⋯cnn⎦⎥⎥⎤=(α1,α2,⋯,αn)C
其中
C
C
C是可逆矩阵,称为由基
α
1
,
α
2
,
⋯
,
α
n
\alpha_{1},\alpha_{2},\cdots,\alpha_{n}
α1,α2,⋯,αn到基
β
1
,
β
2
,
⋯
,
β
n
\beta_{1},\beta_{2},\cdots,\beta_{n}
β1,β2,⋯,βn的过渡矩阵。
6.坐标变换公式
若向量
γ
\gamma
γ在基
α
1
,
α
2
,
⋯
,
α
n
\alpha_{1},\alpha_{2},\cdots,\alpha_{n}
α1,α2,⋯,αn与基
β
1
,
β
2
,
⋯
,
β
n
\beta_{1},\beta_{2},\cdots,\beta_{n}
β1,β2,⋯,βn的坐标分别是
X
=
(
x
1
,
x
2
,
⋯
,
x
n
)
T
X = {(x_{1},x_{2},\cdots,x_{n})}^{T}
X=(x1,x2,⋯,xn)T,
Y
=
(
y
1
,
y
2
,
⋯
,
y
n
)
T
Y = \left( y_{1},y_{2},\cdots,y_{n} \right)^{T}
Y=(y1,y2,⋯,yn)T 即:
γ
=
x
1
α
1
+
x
2
α
2
+
⋯
+
x
n
α
n
=
y
1
β
1
+
y
2
β
2
+
⋯
+
y
n
β
n
\gamma =x_{1}\alpha_{1} + x_{2}\alpha_{2} + \cdots + x_{n}\alpha_{n} = y_{1}\beta_{1} +y_{2}\beta_{2} + \cdots + y_{n}\beta_{n}
γ=x1α1+x2α2+⋯+xnαn=y1β1+y2β2+⋯+ynβn,则向量坐标变换公式为
X
=
C
Y
X = CY
X=CY 或
Y
=
C
−
1
X
Y = C^{- 1}X
Y=C−1X,其中
C
C
C是从基
α
1
,
α
2
,
⋯
,
α
n
\alpha_{1},\alpha_{2},\cdots,\alpha_{n}
α1,α2,⋯,αn到基
β
1
,
β
2
,
⋯
,
β
n
\beta_{1},\beta_{2},\cdots,\beta_{n}
β1,β2,⋯,βn的过渡矩阵。
7.向量的内积
(
α
,
β
)
=
a
1
b
1
+
a
2
b
2
+
⋯
+
a
n
b
n
=
α
T
β
=
β
T
α
(\alpha,\beta) = a_{1}b_{1} + a_{2}b_{2} + \cdots + a_{n}b_{n} = \alpha^{T}\beta = \beta^{T}\alpha
(α,β)=a1b1+a2b2+⋯+anbn=αTβ=βTα
8.Schmidt正交化
若
α
1
,
α
2
,
⋯
,
α
s
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
α1,α2,⋯,αs线性无关,则可构造
β
1
,
β
2
,
⋯
,
β
s
\beta_{1},\beta_{2},\cdots,\beta_{s}
β1,β2,⋯,βs使其两两正交,且
β
i
\beta_{i}
βi仅是
α
1
,
α
2
,
⋯
,
α
i
\alpha_{1},\alpha_{2},\cdots,\alpha_{i}
α1,α2,⋯,αi的线性组合
(
i
=
1
,
2
,
⋯
,
n
)
(i= 1,2,\cdots,n)
(i=1,2,⋯,n),再把
β
i
\beta_{i}
βi单位化,记
γ
i
=
β
i
∣
β
i
∣
\gamma_{i} =\frac{\beta_{i}}{\left| \beta_{i}\right|}
γi=∣βi∣βi,则
γ
1
,
γ
2
,
⋯
,
γ
i
\gamma_{1},\gamma_{2},\cdots,\gamma_{i}
γ1,γ2,⋯,γi是规范正交向量组。其中
β
1
=
α
1
\beta_{1} = \alpha_{1}
β1=α1,
β
2
=
α
2
−
(
α
2
,
β
1
)
(
β
1
,
β
1
)
β
1
\beta_{2} = \alpha_{2} -\frac{(\alpha_{2},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1}
β2=α2−(β1,β1)(α2,β1)β1 ,
β
3
=
α
3
−
(
α
3
,
β
1
)
(
β
1
,
β
1
)
β
1
−
(
α
3
,
β
2
)
(
β
2
,
β
2
)
β
2
\beta_{3} =\alpha_{3} - \frac{(\alpha_{3},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} -\frac{(\alpha_{3},\beta_{2})}{(\beta_{2},\beta_{2})}\beta_{2}
β3=α3−(β1,β1)(α3,β1)β1−(β2,β2)(α3,β2)β2 ,
…
β
s
=
α
s
−
(
α
s
,
β
1
)
(
β
1
,
β
1
)
β
1
−
(
α
s
,
β
2
)
(
β
2
,
β
2
)
β
2
−
⋯
−
(
α
s
,
β
s
−
1
)
(
β
s
−
1
,
β
s
−
1
)
β
s
−
1
\beta_{s} = \alpha_{s} - \frac{(\alpha_{s},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} - \frac{(\alpha_{s},\beta_{2})}{(\beta_{2},\beta_{2})}\beta_{2} - \cdots - \frac{(\alpha_{s},\beta_{s - 1})}{(\beta_{s - 1},\beta_{s - 1})}\beta_{s - 1}
βs=αs−(β1,β1)(αs,β1)β1−(β2,β2)(αs,β2)β2−⋯−(βs−1,βs−1)(αs,βs−1)βs−1
9.正交基及规范正交基
向量空间一组基中的向量如果两两正交,就称为正交基;若正交基中每个向量都是单位向量,就称其为规范正交基。
线性方程组
1.克莱姆法则
线性方程组
{
a
11
x
1
+
a
12
x
2
+
⋯
+
a
1
n
x
n
=
b
1
a
21
x
1
+
a
22
x
2
+
⋯
+
a
2
n
x
n
=
b
2
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
a
n
1
x
1
+
a
n
2
x
2
+
⋯
+
a
n
n
x
n
=
b
n
\begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots +a_{1n}x_{n} = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} =b_{2} \\ \quad\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{{nn}}x_{n} = b_{n} \\ \end{cases}
⎩⎪⎪⎪⎨⎪⎪⎪⎧a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2⋯⋯⋯⋯⋯⋯⋯⋯⋯an1x1+an2x2+⋯+annxn=bn,如果系数行列式
D
=
∣
A
∣
≠
0
D = \left| A \right| \neq 0
D=∣A∣=0,则方程组有唯一解,
x
1
=
D
1
D
,
x
2
=
D
2
D
,
⋯
,
x
n
=
D
n
D
x_{1} = \frac{D_{1}}{D},x_{2} = \frac{D_{2}}{D},\cdots,x_{n} =\frac{D_{n}}{D}
x1=DD1,x2=DD2,⋯,xn=DDn,其中
D
j
D_{j}
Dj是把
D
D
D中第
j
j
j列元素换成方程组右端的常数列所得的行列式。
2.
n
n
n阶矩阵
A
A
A可逆
⇔
A
x
=
0
\Leftrightarrow Ax = 0
⇔Ax=0只有零解。
⇔
∀
b
,
A
x
=
b
\Leftrightarrow\forall b,Ax = b
⇔∀b,Ax=b总有唯一解,一般地,
r
(
A
m
×
n
)
=
n
⇔
A
x
=
0
r(A_{m \times n}) = n \Leftrightarrow Ax= 0
r(Am×n)=n⇔Ax=0只有零解。
3.非奇次线性方程组有解的充分必要条件,线性方程组解的性质和解的结构
(1) 设
A
A
A为
m
×
n
m \times n
m×n矩阵,若
r
(
A
m
×
n
)
=
m
r(A_{m \times n}) = m
r(Am×n)=m,则对
A
x
=
b
Ax =b
Ax=b而言必有
r
(
A
)
=
r
(
A
⋮
b
)
=
m
r(A) = r(A \vdots b) = m
r(A)=r(A⋮b)=m,从而
A
x
=
b
Ax = b
Ax=b有解。
(2) 设
x
1
,
x
2
,
⋯
x
s
x_{1},x_{2},\cdots x_{s}
x1,x2,⋯xs为
A
x
=
b
Ax = b
Ax=b的解,则
k
1
x
1
+
k
2
x
2
⋯
+
k
s
x
s
k_{1}x_{1} + k_{2}x_{2}\cdots + k_{s}x_{s}
k1x1+k2x2⋯+ksxs当
k
1
+
k
2
+
⋯
+
k
s
=
1
k_{1} + k_{2} + \cdots + k_{s} = 1
k1+k2+⋯+ks=1时仍为
A
x
=
b
Ax =b
Ax=b的解;但当
k
1
+
k
2
+
⋯
+
k
s
=
0
k_{1} + k_{2} + \cdots + k_{s} = 0
k1+k2+⋯+ks=0时,则为
A
x
=
0
Ax =0
Ax=0的解。特别
x
1
+
x
2
2
\frac{x_{1} + x_{2}}{2}
2x1+x2为
A
x
=
b
Ax = b
Ax=b的解;
2
x
3
−
(
x
1
+
x
2
)
2x_{3} - (x_{1} +x_{2})
2x3−(x1+x2)为
A
x
=
0
Ax = 0
Ax=0的解。
(3) 非齐次线性方程组
A
x
=
b
{Ax} = b
Ax=b无解
⇔
r
(
A
)
+
1
=
r
(
A
‾
)
⇔
b
\Leftrightarrow r(A) + 1 =r(\overline{A}) \Leftrightarrow b
⇔r(A)+1=r(A)⇔b不能由
A
A
A的列向量
α
1
,
α
2
,
⋯
,
α
n
\alpha_{1},\alpha_{2},\cdots,\alpha_{n}
α1,α2,⋯,αn线性表示。
4.奇次线性方程组的基础解系和通解,解空间,非奇次线性方程组的通解
(1) 齐次方程组
A
x
=
0
{Ax} = 0
Ax=0恒有解(必有零解)。当有非零解时,由于解向量的任意线性组合仍是该齐次方程组的解向量,因此
A
x
=
0
{Ax}= 0
Ax=0的全体解向量构成一个向量空间,称为该方程组的解空间,解空间的维数是
n
−
r
(
A
)
n - r(A)
n−r(A),解空间的一组基称为齐次方程组的基础解系。
(2)
η
1
,
η
2
,
⋯
,
η
t
\eta_{1},\eta_{2},\cdots,\eta_{t}
η1,η2,⋯,ηt是
A
x
=
0
{Ax} = 0
Ax=0的基础解系,即:
η
1
,
η
2
,
⋯
,
η
t
\eta_{1},\eta_{2},\cdots,\eta_{t}
η1,η2,⋯,ηt是
A
x
=
0
{Ax} = 0
Ax=0的解;
η
1
,
η
2
,
⋯
,
η
t
\eta_{1},\eta_{2},\cdots,\eta_{t}
η1,η2,⋯,ηt线性无关;
A
x
=
0
{Ax} = 0
Ax=0的任一解都可以由
η
1
,
η
2
,
⋯
,
η
t
\eta_{1},\eta_{2},\cdots,\eta_{t}
η1,η2,⋯,ηt线性表出.
k
1
η
1
+
k
2
η
2
+
⋯
+
k
t
η
t
k_{1}\eta_{1} + k_{2}\eta_{2} + \cdots + k_{t}\eta_{t}
k1η1+k2η2+⋯+ktηt是
A
x
=
0
{Ax} = 0
Ax=0的通解,其中
k
1
,
k
2
,
⋯
,
k
t
k_{1},k_{2},\cdots,k_{t}
k1,k2,⋯,kt是任意常数。
矩阵的特征值和特征向量
1.矩阵的特征值和特征向量的概念及性质
(1) 设
λ
\lambda
λ是
A
A
A的一个特征值,则
k
A
,
a
A
+
b
E
,
A
2
,
A
m
,
f
(
A
)
,
A
T
,
A
−
1
,
A
∗
{kA},{aA} + {bE},A^{2},A^{m},f(A),A^{T},A^{- 1},A^{*}
kA,aA+bE,A2,Am,f(A),AT,A−1,A∗有一个特征值分别为
k
λ
,
a
λ
+
b
,
λ
2
,
λ
m
,
f
(
λ
)
,
λ
,
λ
−
1
,
∣
A
∣
λ
,
{kλ},{aλ} + b,\lambda^{2},\lambda^{m},f(\lambda),\lambda,\lambda^{- 1},\frac{|A|}{\lambda},
kλ,aλ+b,λ2,λm,f(λ),λ,λ−1,λ∣A∣,且对应特征向量相同(
A
T
A^{T}
AT 例外)。
(2)若
λ
1
,
λ
2
,
⋯
,
λ
n
\lambda_{1},\lambda_{2},\cdots,\lambda_{n}
λ1,λ2,⋯,λn为
A
A
A的
n
n
n个特征值,则
∑
i
=
1
n
λ
i
=
∑
i
=
1
n
a
i
i
,
∏
i
=
1
n
λ
i
=
∣
A
∣
\sum_{i= 1}^{n}\lambda_{i} = \sum_{i = 1}^{n}a_{{ii}},\prod_{i = 1}^{n}\lambda_{i}= |A|
∑i=1nλi=∑i=1naii,∏i=1nλi=∣A∣ ,从而
∣
A
∣
≠
0
⇔
A
|A| \neq 0 \Leftrightarrow A
∣A∣=0⇔A没有特征值。
(3)设
λ
1
,
λ
2
,
⋯
,
λ
s
\lambda_{1},\lambda_{2},\cdots,\lambda_{s}
λ1,λ2,⋯,λs为
A
A
A的
s
s
s个特征值,对应特征向量为
α
1
,
α
2
,
⋯
,
α
s
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
α1,α2,⋯,αs,
若:
α
=
k
1
α
1
+
k
2
α
2
+
⋯
+
k
s
α
s
\alpha = k_{1}\alpha_{1} + k_{2}\alpha_{2} + \cdots + k_{s}\alpha_{s}
α=k1α1+k2α2+⋯+ksαs ,
则:
A
n
α
=
k
1
A
n
α
1
+
k
2
A
n
α
2
+
⋯
+
k
s
A
n
α
s
=
k
1
λ
1
n
α
1
+
k
2
λ
2
n
α
2
+
⋯
k
s
λ
s
n
α
s
A^{n}\alpha = k_{1}A^{n}\alpha_{1} + k_{2}A^{n}\alpha_{2} + \cdots +k_{s}A^{n}\alpha_{s} = k_{1}\lambda_{1}^{n}\alpha_{1} +k_{2}\lambda_{2}^{n}\alpha_{2} + \cdots k_{s}\lambda_{s}^{n}\alpha_{s}
Anα=k1Anα1+k2Anα2+⋯+ksAnαs=k1λ1nα1+k2λ2nα2+⋯ksλsnαs 。
2.相似变换、相似矩阵的概念及性质
(1) 若
A
∼
B
A \sim B
A∼B,则
A
T
∼
B
T
,
A
−
1
∼
B
−
1
,
,
A
∗
∼
B
∗
A^{T} \sim B^{T},A^{- 1} \sim B^{- 1},,A^{*} \sim B^{*}
AT∼BT,A−1∼B−1,,A∗∼B∗
∣
A
∣
=
∣
B
∣
,
∑
i
=
1
n
A
i
i
=
∑
i
=
1
n
b
i
i
,
r
(
A
)
=
r
(
B
)
|A| = |B|,\sum_{i = 1}^{n}A_{{ii}} = \sum_{i =1}^{n}b_{{ii}},r(A) = r(B)
∣A∣=∣B∣,∑i=1nAii=∑i=1nbii,r(A)=r(B)
∣
λ
E
−
A
∣
=
∣
λ
E
−
B
∣
|\lambda E - A| = |\lambda E - B|
∣λE−A∣=∣λE−B∣,对
∀
λ
\forall\lambda
∀λ成立
3.矩阵可相似对角化的充分必要条件
(1)设
A
A
A为
n
n
n阶方阵,则
A
A
A可对角化
⇔
\Leftrightarrow
⇔对每个
k
i
k_{i}
ki重根特征值
λ
i
\lambda_{i}
λi,有
n
−
r
(
λ
i
E
−
A
)
=
k
i
n-r(\lambda_{i}E - A) = k_{i}
n−r(λiE−A)=ki
(2) 设
A
A
A可对角化,则由
P
−
1
A
P
=
Λ
,
P^{- 1}{AP} = \Lambda,
P−1AP=Λ,有
A
=
P
Λ
P
−
1
A = {PΛ}P^{-1}
A=PΛP−1,从而
A
n
=
P
Λ
n
P
−
1
A^{n} = P\Lambda^{n}P^{- 1}
An=PΛnP−1
(3) 重要结论
若
A
∼
B
,
C
∼
D
A \sim B,C \sim D
A∼B,C∼D,则
[
A
O
O
C
]
∼
[
B
O
O
D
]
\begin{bmatrix} A & O \\ O & C \\\end{bmatrix} \sim \begin{bmatrix} B & O \\ O & D \\\end{bmatrix}
[AOOC]∼[BOOD].
若
A
∼
B
A \sim B
A∼B,则
f
(
A
)
∼
f
(
B
)
,
∣
f
(
A
)
∣
∼
∣
f
(
B
)
∣
f(A) \sim f(B),\left| f(A) \right| \sim \left| f(B)\right|
f(A)∼f(B),∣f(A)∣∼∣f(B)∣,其中
f
(
A
)
f(A)
f(A)为关于
n
n
n阶方阵
A
A
A的多项式。
若
A
A
A为可对角化矩阵,则其非零特征值的个数(重根重复计算)=秩(
A
A
A)
4.实对称矩阵的特征值、特征向量及相似对角阵
(1)相似矩阵:设
A
,
B
A,B
A,B为两个
n
n
n阶方阵,如果存在一个可逆矩阵
P
P
P,使得
B
=
P
−
1
A
P
B =P^{- 1}{AP}
B=P−1AP成立,则称矩阵
A
A
A与
B
B
B相似,记为
A
∼
B
A \sim B
A∼B。
(2)相似矩阵的性质:如果
A
∼
B
A \sim B
A∼B则有:
A
T
∼
B
T
A^{T} \sim B^{T}
AT∼BT
A
−
1
∼
B
−
1
A^{- 1} \sim B^{- 1}
A−1∼B−1 (若
A
A
A,
B
B
B均可逆)
A
k
∼
B
k
A^{k} \sim B^{k}
Ak∼Bk (
k
k
k为正整数)
∣
λ
E
−
A
∣
=
∣
λ
E
−
B
∣
\left| {λE} - A \right| = \left| {λE} - B \right|
∣λE−A∣=∣λE−B∣,从而
A
,
B
A,B
A,B
有相同的特征值∣
A
∣
=
∣
B
∣
\left| A \right| = \left| B \right|
∣A∣=∣B∣,从而
A
,
B
A,B
A,B同时可逆或者不可逆
秩
(
A
)
=
\left( A \right) =
(A)=秩
(
B
)
,
∣
λ
E
−
A
∣
=
∣
λ
E
−
B
∣
\left( B \right),\left| {λE} - A \right| =\left| {λE} - B \right|
(B),∣λE−A∣=∣λE−B∣,
A
,
B
A,B
A,B不一定相似
二次型
1.
n
\mathbf{n}
n个变量
x
1
,
x
2
,
⋯
,
x
n
\mathbf{x}_{\mathbf{1}}\mathbf{,}\mathbf{x}_{\mathbf{2}}\mathbf{,\cdots,}\mathbf{x}_{\mathbf{n}}
x1,x2,⋯,xn的二次齐次函数
f
(
x
1
,
x
2
,
⋯
,
x
n
)
=
∑
i
=
1
n
∑
j
=
1
n
a
i
j
x
i
y
j
f(x_{1},x_{2},\cdots,x_{n}) = \sum_{i = 1}^{n}{\sum_{j =1}^{n}{a_{{ij}}x_{i}y_{j}}}
f(x1,x2,⋯,xn)=∑i=1n∑j=1naijxiyj,其中
a
i
j
=
a
j
i
(
i
,
j
=
1
,
2
,
⋯
,
n
)
a_{{ij}} = a_{{ji}}(i,j =1,2,\cdots,n)
aij=aji(i,j=1,2,⋯,n),称为
n
n
n元二次型,简称二次型. 若令
x
=
[
x
1
x
1
⋮
x
n
]
,
A
=
[
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋯
⋯
⋯
⋯
a
n
1
a
n
2
⋯
a
n
n
]
x = \ \begin{bmatrix}x_{1} \\ x_{1} \\ \vdots \\ x_{n} \\ \end{bmatrix},A = \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \cdots &\cdots &\cdots &\cdots \\ a_{n1}& a_{n2} & \cdots & a_{{nn}} \\\end{bmatrix}
x= ⎣⎢⎢⎢⎡x1x1⋮xn⎦⎥⎥⎥⎤,A=⎣⎢⎢⎡a11a21⋯an1a12a22⋯an2⋯⋯⋯⋯a1na2n⋯ann⎦⎥⎥⎤,这二次型
f
f
f可改写成矩阵向量形式
f
=
x
T
A
x
f =x^{T}{Ax}
f=xTAx。其中
A
A
A称为二次型矩阵,因为
a
i
j
=
a
j
i
(
i
,
j
=
1
,
2
,
⋯
,
n
)
a_{{ij}} =a_{{ji}}(i,j =1,2,\cdots,n)
aij=aji(i,j=1,2,⋯,n),所以二次型矩阵均为对称矩阵,且二次型与对称矩阵一一对应,并把矩阵
A
A
A的秩称为二次型的秩。
2.惯性定理,二次型的标准形和规范形
(1) 惯性定理
对于任一二次型,不论选取怎样的合同变换使它化为仅含平方项的标准型,其正负惯性指数与所选变换无关,这就是所谓的惯性定理。
(2) 标准形
二次型
f
=
(
x
1
,
x
2
,
⋯
,
x
n
)
=
x
T
A
x
f = \left( x_{1},x_{2},\cdots,x_{n} \right) =x^{T}{Ax}
f=(x1,x2,⋯,xn)=xTAx经过合同变换
x
=
C
y
x = {Cy}
x=Cy化为
f
=
x
T
A
x
=
y
T
C
T
A
C
f = x^{T}{Ax} =y^{T}C^{T}{AC}
f=xTAx=yTCTAC
y
=
∑
i
=
1
r
d
i
y
i
2
y = \sum_{i = 1}^{r}{d_{i}y_{i}^{2}}
y=∑i=1rdiyi2称为
f
(
r
≤
n
)
f(r \leq n)
f(r≤n)的标准形。在一般的数域内,二次型的标准形不是唯一的,与所作的合同变换有关,但系数不为零的平方项的个数由
r
(
A
)
r(A)
r(A)唯一确定。
(3) 规范形
任一实二次型
f
f
f都可经过合同变换化为规范形
f
=
z
1
2
+
z
2
2
+
⋯
z
p
2
−
z
p
+
1
2
−
⋯
−
z
r
2
f = z_{1}^{2} + z_{2}^{2} + \cdots z_{p}^{2} - z_{p + 1}^{2} - \cdots -z_{r}^{2}
f=z12+z22+⋯zp2−zp+12−⋯−zr2,其中
r
r
r为
A
A
A的秩,
p
p
p为正惯性指数,
r
−
p
r -p
r−p为负惯性指数,且规范型唯一。
3.用正交变换和配方法化二次型为标准形,二次型及其矩阵的正定性
设
A
A
A正定
⇒
k
A
(
k
>
0
)
,
A
T
,
A
−
1
,
A
∗
\Rightarrow {kA}(k > 0),A^{T},A^{- 1},A^{*}
⇒kA(k>0),AT,A−1,A∗正定;
∣
A
∣
>
0
|A| >0
∣A∣>0,
A
A
A可逆;
a
i
i
>
0
a_{{ii}} > 0
aii>0,且
∣
A
i
i
∣
>
0
|A_{{ii}}| > 0
∣Aii∣>0
A
A
A,
B
B
B正定
⇒
A
+
B
\Rightarrow A +B
⇒A+B正定,但
A
B
{AB}
AB,
B
A
{BA}
BA不一定正定
A
A
A正定
⇔
f
(
x
)
=
x
T
A
x
>
0
,
∀
x
≠
0
\Leftrightarrow f(x) = x^{T}{Ax} > 0,\forall x \neq 0
⇔f(x)=xTAx>0,∀x=0
⇔
A
\Leftrightarrow A
⇔A的各阶顺序主子式全大于零
⇔
A
\Leftrightarrow A
⇔A的所有特征值大于零
⇔
A
\Leftrightarrow A
⇔A的正惯性指数为
n
n
n
⇔
\Leftrightarrow
⇔存在可逆阵
P
P
P使
A
=
P
T
P
A = P^{T}P
A=PTP
⇔
\Leftrightarrow
⇔存在正交矩阵
Q
Q
Q,使
Q
T
A
Q
=
Q
−
1
A
Q
=
(
λ
1
⋱
λ
n
)
,
Q^{T}{AQ} = Q^{- 1}{AQ} =\begin{pmatrix} \lambda_{1} & & \\ \begin{matrix} & \\ & \\ \end{matrix} &\ddots & \\ & & \lambda_{n} \\ \end{pmatrix},
QTAQ=Q−1AQ=⎝⎜⎜⎛λ1⋱λn⎠⎟⎟⎞,
其中
λ
i
>
0
,
i
=
1
,
2
,
⋯
,
n
.
\lambda_{i} > 0,i = 1,2,\cdots,n.
λi>0,i=1,2,⋯,n.正定
⇒
k
A
(
k
>
0
)
,
A
T
,
A
−
1
,
A
∗
\Rightarrow {kA}(k >0),A^{T},A^{- 1},A^{*}
⇒kA(k>0),AT,A−1,A∗正定;
∣
A
∣
>
0
,
A
|A| > 0,A
∣A∣>0,A可逆;
a
i
i
>
0
a_{{ii}} >0
aii>0,且
∣
A
i
i
∣
>
0
|A_{{ii}}| > 0
∣Aii∣>0 。
概率论和数理统计
随机事件和概率
1.事件的关系与运算
(1) 子事件:
A
⊂
B
A \subset B
A⊂B,若
A
A
A发生,则
B
B
B发生。
(2) 相等事件:
A
=
B
A = B
A=B,即
A
⊂
B
A \subset B
A⊂B,且
B
⊂
A
B \subset A
B⊂A 。
(3) 和事件:
A
⋃
B
A\bigcup B
A⋃B(或
A
+
B
A + B
A+B),
A
A
A与
B
B
B中至少有一个发生。
(4) 差事件:
A
−
B
A - B
A−B,
A
A
A发生但
B
B
B不发生。
(5) 积事件:
A
⋂
B
A\bigcap B
A⋂B(或
A
B
{AB}
AB),
A
A
A与
B
B
B同时发生。
(6) 互斥事件(互不相容):
A
⋂
B
A\bigcap B
A⋂B=
∅
\varnothing
∅。
(7) 互逆事件(对立事件):
A
⋂
B
=
∅
,
A
⋃
B
=
Ω
,
A
=
B
ˉ
,
B
=
A
ˉ
A\bigcap B=\varnothing ,A\bigcup B=\Omega ,A=\bar{B},B=\bar{A}
A⋂B=∅,A⋃B=Ω,A=Bˉ,B=Aˉ
2.运算律
(1) 交换律:
A
⋃
B
=
B
⋃
A
,
A
⋂
B
=
B
⋂
A
A\bigcup B=B\bigcup A,A\bigcap B=B\bigcap A
A⋃B=B⋃A,A⋂B=B⋂A
(2) 结合律:
(
A
⋃
B
)
⋃
C
=
A
⋃
(
B
⋃
C
)
(A\bigcup B)\bigcup C=A\bigcup (B\bigcup C)
(A⋃B)⋃C=A⋃(B⋃C)
(3) 分配律:
(
A
⋂
B
)
⋂
C
=
A
⋂
(
B
⋂
C
)
(A\bigcap B)\bigcap C=A\bigcap (B\bigcap C)
(A⋂B)⋂C=A⋂(B⋂C)
3.德
⋅
\centerdot
⋅摩根律
A
⋃
B
‾
=
A
ˉ
⋂
B
ˉ
\overline{A\bigcup B}=\bar{A}\bigcap \bar{B}
A⋃B=Aˉ⋂Bˉ
A
⋂
B
‾
=
A
ˉ
⋃
B
ˉ
\overline{A\bigcap B}=\bar{A}\bigcup \bar{B}
A⋂B=Aˉ⋃Bˉ
4.完全事件组
A
1
A
2
⋯
A
n
{{A}_{1}}{{A}_{2}}\cdots {{A}{n}}
A1A2⋯An 两两互斥,且和事件为必然事件,即
A
i
⋂
A
j
=
∅
,
i
≠
j
,
⋃
i
=
1
n
=
Ω
{A_i} \bigcap {A_j}=\varnothing, i \ne j ,\bigcup_{i=1}^{n} = \Omega
Ai⋂Aj=∅,i=j,⋃i=1n=Ω
5.概率的基本公式
(1)条件概率:
P
(
B
∣
A
)
=
P
(
A
B
)
P
(
A
)
P(B|A)=\frac{P(AB)}{P(A)}
P(B∣A)=P(A)P(AB),表示
A
A
A发生的条件下,
B
B
B发生的概率。
(2)全概率公式:
P
(
A
)
=
∑
i
=
1
n
P
(
A
∣
B
i
)
P
(
B
i
)
,
B
i
B
j
=
∅
,
i
≠
j
,
⋃
n
i
=
1
B
i
=
Ω
P(A)=\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}}),{{B}_{i}}{{B}_{j}}}=\varnothing ,i\ne j,\underset{i=1}{\overset{n}{\mathop{\bigcup }}}\,{{B}_{i}}=\Omega
P(A)=i=1∑nP(A∣Bi)P(Bi),BiBj=∅,i=j,i=1⋃nBi=Ω
(3) Bayes公式:
P
(
B
j
∣
A
)
=
P
(
A
∣
B
j
)
P
(
B
j
)
∑
i
=
1
n
P
(
A
∣
B
i
)
P
(
B
i
)
,
j
=
1
,
2
,
⋯
,
n
P({{B}_{j}}|A)=\frac{P(A|{{B}_{j}})P({{B}_{j}})}{\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}})}},j=1,2,\cdots ,n
P(Bj∣A)=i=1∑nP(A∣Bi)P(Bi)P(A∣Bj)P(Bj),j=1,2,⋯,n
注:上述公式中事件
B
i
{{B}_{i}}
Bi的个数可为可列个。
(4)乘法公式:
P
(
A
1
A
2
)
=
P
(
A
1
)
P
(
A
2
∣
A
1
)
=
P
(
A
2
)
P
(
A
1
∣
A
2
)
P({{A}_{1}}{{A}_{2}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})=P({{A}_{2}})P({{A}_{1}}|{{A}_{2}})
P(A1A2)=P(A1)P(A2∣A1)=P(A2)P(A1∣A2)
P
(
A
1
A
2
⋯
A
n
)
=
P
(
A
1
)
P
(
A
2
∣
A
1
)
P
(
A
3
∣
A
1
A
2
)
⋯
P
(
A
n
∣
A
1
A
2
⋯
A
n
−
1
)
P({{A}_{1}}{{A}_{2}}\cdots {{A}_{n}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})P({{A}_{3}}|{{A}_{1}}{{A}_{2}})\cdots P({{A}_{n}}|{{A}_{1}}{{A}_{2}}\cdots {{A}_{n-1}})
P(A1A2⋯An)=P(A1)P(A2∣A1)P(A3∣A1A2)⋯P(An∣A1A2⋯An−1)
6.事件的独立性
(1)
A
A
A与
B
B
B相互独立
⇔
P
(
A
B
)
=
P
(
A
)
P
(
B
)
\Leftrightarrow P(AB)=P(A)P(B)
⇔P(AB)=P(A)P(B)
(2)
A
A
A,
B
B
B,
C
C
C两两独立
⇔
P
(
A
B
)
=
P
(
A
)
P
(
B
)
\Leftrightarrow P(AB)=P(A)P(B)
⇔P(AB)=P(A)P(B);
P
(
B
C
)
=
P
(
B
)
P
(
C
)
P(BC)=P(B)P(C)
P(BC)=P(B)P(C) ;
P
(
A
C
)
=
P
(
A
)
P
(
C
)
P(AC)=P(A)P(C)
P(AC)=P(A)P(C);
(3)
A
A
A,
B
B
B,
C
C
C相互独立
⇔
P
(
A
B
)
=
P
(
A
)
P
(
B
)
\Leftrightarrow P(AB)=P(A)P(B)
⇔P(AB)=P(A)P(B);
P
(
B
C
)
=
P
(
B
)
P
(
C
)
P(BC)=P(B)P(C)
P(BC)=P(B)P(C) ;
P
(
A
C
)
=
P
(
A
)
P
(
C
)
P(AC)=P(A)P(C)
P(AC)=P(A)P(C) ;
P
(
A
B
C
)
=
P
(
A
)
P
(
B
)
P
(
C
)
P(ABC)=P(A)P(B)P(C)
P(ABC)=P(A)P(B)P(C)
7.独立重复试验
将某试验独立重复
n
n
n次,若每次实验中事件A发生的概率为
p
p
p,则
n
n
n次试验中
A
A
A发生
k
k
k次的概率为:
P
(
X
=
k
)
=
C
n
k
p
k
(
1
−
p
)
n
−
k
P(X=k)=C_{n}^{k}{{p}^{k}}{{(1-p)}^{n-k}}
P(X=k)=Cnkpk(1−p)n−k
8.重要公式与结论
(
1
)
P
(
A
ˉ
)
=
1
−
P
(
A
)
(1)P(\bar{A})=1-P(A)
(1)P(Aˉ)=1−P(A)
(
2
)
P
(
A
⋃
B
)
=
P
(
A
)
+
P
(
B
)
−
P
(
A
B
)
(2)P(A\bigcup B)=P(A)+P(B)-P(AB)
(2)P(A⋃B)=P(A)+P(B)−P(AB)
P
(
A
⋃
B
⋃
C
)
=
P
(
A
)
+
P
(
B
)
+
P
(
C
)
−
P
(
A
B
)
−
P
(
B
C
)
−
P
(
A
C
)
+
P
(
A
B
C
)
P(A\bigcup B\bigcup C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)
P(A⋃B⋃C)=P(A)+P(B)+P(C)−P(AB)−P(BC)−P(AC)+P(ABC)
(
3
)
P
(
A
−
B
)
=
P
(
A
)
−
P
(
A
B
)
(3)P(A-B)=P(A)-P(AB)
(3)P(A−B)=P(A)−P(AB)
(
4
)
P
(
A
B
ˉ
)
=
P
(
A
)
−
P
(
A
B
)
,
P
(
A
)
=
P
(
A
B
)
+
P
(
A
B
ˉ
)
,
(4)P(A\bar{B})=P(A)-P(AB),P(A)=P(AB)+P(A\bar{B}),
(4)P(ABˉ)=P(A)−P(AB),P(A)=P(AB)+P(ABˉ),
P
(
A
⋃
B
)
=
P
(
A
)
+
P
(
A
ˉ
B
)
=
P
(
A
B
)
+
P
(
A
B
ˉ
)
+
P
(
A
ˉ
B
)
P(A\bigcup B)=P(A)+P(\bar{A}B)=P(AB)+P(A\bar{B})+P(\bar{A}B)
P(A⋃B)=P(A)+P(AˉB)=P(AB)+P(ABˉ)+P(AˉB)
(5)条件概率
P
(
⋅
∣
B
)
P(\centerdot |B)
P(⋅∣B)满足概率的所有性质,
例如:.
P
(
A
ˉ
1
∣
B
)
=
1
−
P
(
A
1
∣
B
)
P({{\bar{A}}_{1}}|B)=1-P({{A}_{1}}|B)
P(Aˉ1∣B)=1−P(A1∣B)
P
(
A
1
⋃
A
2
∣
B
)
=
P
(
A
1
∣
B
)
+
P
(
A
2
∣
B
)
−
P
(
A
1
A
2
∣
B
)
P({{A}_{1}}\bigcup {{A}_{2}}|B)=P({{A}_{1}}|B)+P({{A}_{2}}|B)-P({{A}_{1}}{{A}_{2}}|B)
P(A1⋃A2∣B)=P(A1∣B)+P(A2∣B)−P(A1A2∣B)
P
(
A
1
A
2
∣
B
)
=
P
(
A
1
∣
B
)
P
(
A
2
∣
A
1
B
)
P({{A}_{1}}{{A}_{2}}|B)=P({{A}_{1}}|B)P({{A}_{2}}|{{A}_{1}}B)
P(A1A2∣B)=P(A1∣B)P(A2∣A1B)
(6)若
A
1
,
A
2
,
⋯
,
A
n
{{A}_{1}},{{A}_{2}},\cdots ,{{A}_{n}}
A1,A2,⋯,An相互独立,则
P
(
⋂
i
=
1
n
A
i
)
=
∏
i
=
1
n
P
(
A
i
)
,
P(\bigcap\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{P({{A}_{i}})},
P(i=1⋂nAi)=i=1∏nP(Ai),
P
(
⋃
i
=
1
n
A
i
)
=
∏
i
=
1
n
(
1
−
P
(
A
i
)
)
P(\bigcup\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{(1-P({{A}_{i}}))}
P(i=1⋃nAi)=i=1∏n(1−P(Ai))
(7)互斥、互逆与独立性之间的关系:
A
A
A与
B
B
B互逆
⇒
\Rightarrow
⇒
A
A
A与
B
B
B互斥,但反之不成立,
A
A
A与
B
B
B互斥(或互逆)且均非零概率事件
⇒
\Rightarrow
⇒
A
A
A 与
B
B
B 不独立.
(8)若
A
1
,
A
2
,
⋯
,
A
m
,
B
1
,
B
2
,
⋯
,
B
n
{{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}},{{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}}
A1,A2,⋯,Am,B1,B2,⋯,Bn 相互独立,则
f
(
A
1
,
A
2
,
⋯
,
A
m
)
f({{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}})
f(A1,A2,⋯,Am) 与
g
(
B
1
,
B
2
,
⋯
,
B
n
)
g({{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}})
g(B1,B2,⋯,Bn) 也相互独立,其中
f
(
⋅
)
,
g
(
⋅
)
f(\centerdot ),g(\centerdot )
f(⋅),g(⋅) 分别表示对相应事件做任意事件运算后所得的事件,另外,概率为1(或0)的事件与任何事件相互独立.
随机变量及其概率分布
1.随机变量及概率分布
取值带有随机性的变量,严格地说是定义在样本空间上,取值于实数的函数称为随机变量,概率分布通常指分布函数或分布律
2.分布函数的概念与性质
定义:
F
(
x
)
=
P
(
X
≤
x
)
,
−
∞
<
x
<
+
∞
F(x) = P(X \leq x), - \infty < x < + \infty
F(x)=P(X≤x),−∞<x<+∞
性质:(1)
0
≤
F
(
x
)
≤
1
0 \leq F(x) \leq 1
0≤F(x)≤1
(2)
F
(
x
)
F(x)
F(x)单调不减
(3) 右连续
F
(
x
+
0
)
=
F
(
x
)
F(x + 0) = F(x)
F(x+0)=F(x)
(4)
F
(
−
∞
)
=
0
,
F
(
+
∞
)
=
1
F( - \infty) = 0,F( + \infty) = 1
F(−∞)=0,F(+∞)=1
3.离散型随机变量的概率分布
P
(
X
=
x
i
)
=
p
i
,
i
=
1
,
2
,
⋯
,
n
,
⋯
p
i
≥
0
,
∑
i
=
1
∞
p
i
=
1
P(X = x_{i}) = p_{i},i = 1,2,\cdots,n,\cdots\quad\quad p_{i} \geq 0,\sum_{i =1}^{\infty}p_{i} = 1
P(X=xi)=pi,i=1,2,⋯,n,⋯pi≥0,∑i=1∞pi=1
4.连续型随机变量的概率密度
概率密度
f
(
x
)
f(x)
f(x);非负可积,且:
(1)
f
(
x
)
≥
0
,
f(x) \geq 0,
f(x)≥0,
(2)
∫
−
∞
+
∞
f
(
x
)
d
x
=
1
\int_{- \infty}^{+\infty}{f(x){dx} = 1}
∫−∞+∞f(x)dx=1
(3)
x
x
x为
f
(
x
)
f(x)
f(x)的连续点,则:
f
(
x
)
=
F
′
(
x
)
f(x) = F'(x)
f(x)=F′(x)分布函数
F
(
x
)
=
∫
−
∞
x
f
(
t
)
d
t
F(x) = \int_{- \infty}^{x}{f(t){dt}}
F(x)=∫−∞xf(t)dt
5.常见分布
(1) 0-1分布:
P
(
X
=
k
)
=
p
k
(
1
−
p
)
1
−
k
,
k
=
0
,
1
P(X = k) = p^{k}{(1 - p)}^{1 - k},k = 0,1
P(X=k)=pk(1−p)1−k,k=0,1
(2) 二项分布:
B
(
n
,
p
)
B(n,p)
B(n,p):
P
(
X
=
k
)
=
C
n
k
p
k
(
1
−
p
)
n
−
k
,
k
=
0
,
1
,
⋯
,
n
P(X = k) = C_{n}^{k}p^{k}{(1 - p)}^{n - k},k =0,1,\cdots,n
P(X=k)=Cnkpk(1−p)n−k,k=0,1,⋯,n
(3) Poisson分布:
p
(
λ
)
p(\lambda)
p(λ):
P
(
X
=
k
)
=
λ
k
k
!
e
−
λ
,
λ
>
0
,
k
=
0
,
1
,
2
⋯
P(X = k) = \frac{\lambda^{k}}{k!}e^{-\lambda},\lambda > 0,k = 0,1,2\cdots
P(X=k)=k!λke−λ,λ>0,k=0,1,2⋯
(4) 均匀分布
U
(
a
,
b
)
U(a,b)
U(a,b):
f
(
x
)
=
{
1
b
−
a
,
a
<
x
<
b
0
,
f(x) = \{ \begin{matrix} & \frac{1}{b - a},a < x< b \\ & 0, \\ \end{matrix}
f(x)={b−a1,a<x<b0,
(5) 正态分布:
N
(
μ
,
σ
2
)
:
N(\mu,\sigma^{2}):
N(μ,σ2):
φ
(
x
)
=
1
2
π
σ
e
−
(
x
−
μ
)
2
2
σ
2
,
σ
>
0
,
∞
<
x
<
+
∞
\varphi(x) =\frac{1}{\sqrt{2\pi}\sigma}e^{- \frac{{(x - \mu)}^{2}}{2\sigma^{2}}},\sigma > 0,\infty < x < + \infty
φ(x)=2π
σ1e−2σ2(x−μ)2,σ>0,∞<x<+∞
(6)指数分布:
E
(
λ
)
:
f
(
x
)
=
{
λ
e
−
λ
x
,
x
>
0
,
λ
>
0
0
,
E(\lambda):f(x) =\{ \begin{matrix} & \lambda e^{-{λx}},x > 0,\lambda > 0 \\ & 0, \\ \end{matrix}
E(λ):f(x)={λe−λx,x>0,λ>00,
(7)几何分布:
G
(
p
)
:
P
(
X
=
k
)
=
(
1
−
p
)
k
−
1
p
,
0
<
p
<
1
,
k
=
1
,
2
,
⋯
.
G(p):P(X = k) = {(1 - p)}^{k - 1}p,0 < p < 1,k = 1,2,\cdots.
G(p):P(X=k)=(1−p)k−1p,0<p<1,k=1,2,⋯.
(8)超几何分布:
H
(
N
,
M
,
n
)
:
P
(
X
=
k
)
=
C
M
k
C
N
−
M
n
−
k
C
N
n
,
k
=
0
,
1
,
⋯
,
m
i
n
(
n
,
M
)
H(N,M,n):P(X = k) = \frac{C_{M}^{k}C_{N - M}^{n -k}}{C_{N}^{n}},k =0,1,\cdots,min(n,M)
H(N,M,n):P(X=k)=CNnCMkCN−Mn−k,k=0,1,⋯,min(n,M)
6.随机变量函数的概率分布
(1)离散型:
P
(
X
=
x
1
)
=
p
i
,
Y
=
g
(
X
)
P(X = x_{1}) = p_{i},Y = g(X)
P(X=x1)=pi,Y=g(X)
则:
P
(
Y
=
y
j
)
=
∑
g
(
x
i
)
=
y
i
P
(
X
=
x
i
)
P(Y = y_{j}) = \sum_{g(x_{i}) = y_{i}}^{}{P(X = x_{i})}
P(Y=yj)=∑g(xi)=yiP(X=xi)
(2)连续型:
X
~
f
X
(
x
)
,
Y
=
g
(
x
)
X\tilde{\ }f_{X}(x),Y = g(x)
X ~fX(x),Y=g(x)
则:
F
y
(
y
)
=
P
(
Y
≤
y
)
=
P
(
g
(
X
)
≤
y
)
=
∫
g
(
x
)
≤
y
f
x
(
x
)
d
x
F_{y}(y) = P(Y \leq y) = P(g(X) \leq y) = \int_{g(x) \leq y}^{}{f_{x}(x)dx}
Fy(y)=P(Y≤y)=P(g(X)≤y)=∫g(x)≤yfx(x)dx,
f
Y
(
y
)
=
F
Y
′
(
y
)
f_{Y}(y) = F'_{Y}(y)
fY(y)=FY′(y)
7.重要公式与结论
(1)
X
∼
N
(
0
,
1
)
⇒
φ
(
0
)
=
1
2
π
,
Φ
(
0
)
=
1
2
,
X\sim N(0,1) \Rightarrow \varphi(0) = \frac{1}{\sqrt{2\pi}},\Phi(0) =\frac{1}{2},
X∼N(0,1)⇒φ(0)=2π
1,Φ(0)=21,
Φ
(
−
a
)
=
P
(
X
≤
−
a
)
=
1
−
Φ
(
a
)
\Phi( - a) = P(X \leq - a) = 1 - \Phi(a)
Φ(−a)=P(X≤−a)=1−Φ(a)
(2)
X
∼
N
(
μ
,
σ
2
)
⇒
X
−
μ
σ
∼
N
(
0
,
1
)
,
P
(
X
≤
a
)
=
Φ
(
a
−
μ
σ
)
X\sim N\left( \mu,\sigma^{2} \right) \Rightarrow \frac{X -\mu}{\sigma}\sim N\left( 0,1 \right),P(X \leq a) = \Phi(\frac{a -\mu}{\sigma})
X∼N(μ,σ2)⇒σX−μ∼N(0,1),P(X≤a)=Φ(σa−μ)
(3)
X
∼
E
(
λ
)
⇒
P
(
X
>
s
+
t
∣
X
>
s
)
=
P
(
X
>
t
)
X\sim E(\lambda) \Rightarrow P(X > s + t|X > s) = P(X > t)
X∼E(λ)⇒P(X>s+t∣X>s)=P(X>t)
(4)
X
∼
G
(
p
)
⇒
P
(
X
=
m
+
k
∣
X
>
m
)
=
P
(
X
=
k
)
X\sim G(p) \Rightarrow P(X = m + k|X > m) = P(X = k)
X∼G(p)⇒P(X=m+k∣X>m)=P(X=k)
(5) 离散型随机变量的分布函数为阶梯间断函数;连续型随机变量的分布函数为连续函数,但不一定为处处可导函数。
(6) 存在既非离散也非连续型随机变量。
多维随机变量及其分布
1.二维随机变量及其联合分布
由两个随机变量构成的随机向量
(
X
,
Y
)
(X,Y)
(X,Y), 联合分布为
F
(
x
,
y
)
=
P
(
X
≤
x
,
Y
≤
y
)
F(x,y) = P(X \leq x,Y \leq y)
F(x,y)=P(X≤x,Y≤y)
2.二维离散型随机变量的分布
(1) 联合概率分布律
P
{
X
=
x
i
,
Y
=
y
j
}
=
p
i
j
;
i
,
j
=
1
,
2
,
⋯
P\{ X = x_{i},Y = y_{j}\} = p_{{ij}};i,j =1,2,\cdots
P{X=xi,Y=yj}=pij;i,j=1,2,⋯
(2) 边缘分布律
p
i
⋅
=
∑
j
=
1
∞
p
i
j
,
i
=
1
,
2
,
⋯
p_{i \cdot} = \sum_{j = 1}^{\infty}p_{{ij}},i =1,2,\cdots
pi⋅=∑j=1∞pij,i=1,2,⋯
p
⋅
j
=
∑
i
∞
p
i
j
,
j
=
1
,
2
,
⋯
p_{\cdot j} = \sum_{i}^{\infty}p_{{ij}},j = 1,2,\cdots
p⋅j=∑i∞pij,j=1,2,⋯
(3) 条件分布律
P
{
X
=
x
i
∣
Y
=
y
j
}
=
p
i
j
p
⋅
j
P\{ X = x_{i}|Y = y_{j}\} = \frac{p_{{ij}}}{p_{\cdot j}}
P{X=xi∣Y=yj}=p⋅jpij
P
{
Y
=
y
j
∣
X
=
x
i
}
=
p
i
j
p
i
⋅
P\{ Y = y_{j}|X = x_{i}\} = \frac{p_{{ij}}}{p_{i \cdot}}
P{Y=yj∣X=xi}=pi⋅pij
3. 二维连续性随机变量的密度
(1) 联合概率密度
f
(
x
,
y
)
:
f(x,y):
f(x,y):
f
(
x
,
y
)
≥
0
f(x,y) \geq 0
f(x,y)≥0
∫
−
∞
+
∞
∫
−
∞
+
∞
f
(
x
,
y
)
d
x
d
y
=
1
\int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{f(x,y)dxdy}} = 1
∫−∞+∞∫−∞+∞f(x,y)dxdy=1
(2) 分布函数:
F
(
x
,
y
)
=
∫
−
∞
x
∫
−
∞
y
f
(
u
,
v
)
d
u
d
v
F(x,y) = \int_{- \infty}^{x}{\int_{- \infty}^{y}{f(u,v)dudv}}
F(x,y)=∫−∞x∫−∞yf(u,v)dudv
(3) 边缘概率密度:
f
X
(
x
)
=
∫
−
∞
+
∞
f
(
x
,
y
)
d
y
f_{X}\left( x \right) = \int_{- \infty}^{+ \infty}{f\left( x,y \right){dy}}
fX(x)=∫−∞+∞f(x,y)dy
f
Y
(
y
)
=
∫
−
∞
+
∞
f
(
x
,
y
)
d
x
f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}
fY(y)=∫−∞+∞f(x,y)dx
(4) 条件概率密度:
f
X
∣
Y
(
x
|
y
)
=
f
(
x
,
y
)
f
Y
(
y
)
f_{X|Y}\left( x \middle| y \right) = \frac{f\left( x,y \right)}{f_{Y}\left( y \right)}
fX∣Y(x∣y)=fY(y)f(x,y)
f
Y
∣
X
(
y
∣
x
)
=
f
(
x
,
y
)
f
X
(
x
)
f_{Y|X}(y|x) = \frac{f(x,y)}{f_{X}(x)}
fY∣X(y∣x)=fX(x)f(x,y)
4.常见二维随机变量的联合分布
(1) 二维均匀分布:
(
x
,
y
)
∼
U
(
D
)
(x,y) \sim U(D)
(x,y)∼U(D) ,
f
(
x
,
y
)
=
{
1
S
(
D
)
,
(
x
,
y
)
∈
D
0
,
其
他
f(x,y) = \begin{cases} \frac{1}{S(D)},(x,y) \in D \\ 0,其他 \end{cases}
f(x,y)={S(D)1,(x,y)∈D0,其他
(2) 二维正态分布:
(
X
,
Y
)
∼
N
(
μ
1
,
μ
2
,
σ
1
2
,
σ
2
2
,
ρ
)
(X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)
(X,Y)∼N(μ1,μ2,σ12,σ22,ρ),
(
X
,
Y
)
∼
N
(
μ
1
,
μ
2
,
σ
1
2
,
σ
2
2
,
ρ
)
(X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)
(X,Y)∼N(μ1,μ2,σ12,σ22,ρ)
f
(
x
,
y
)
=
1
2
π
σ
1
σ
2
1
−
ρ
2
.
exp
{
−
1
2
(
1
−
ρ
2
)
[
(
x
−
μ
1
)
2
σ
1
2
−
2
ρ
(
x
−
μ
1
)
(
y
−
μ
2
)
σ
1
σ
2
+
(
y
−
μ
2
)
2
σ
2
2
]
}
f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1 - \rho^{2}}}.\exp\left\{ \frac{- 1}{2(1 - \rho^{2})}\lbrack\frac{{(x - \mu_{1})}^{2}}{\sigma_{1}^{2}} - 2\rho\frac{(x - \mu_{1})(y - \mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{{(y - \mu_{2})}^{2}}{\sigma_{2}^{2}}\rbrack \right\}
f(x,y)=2πσ1σ21−ρ2
1.exp{2(1−ρ2)−1[σ12(x−μ1)2−2ρσ1σ2(x−μ1)(y−μ2)+σ22(y−μ2)2]}
5.随机变量的独立性和相关性
X
X
X和
Y
Y
Y的相互独立:
⇔
F
(
x
,
y
)
=
F
X
(
x
)
F
Y
(
y
)
\Leftrightarrow F\left( x,y \right) = F_{X}\left( x \right)F_{Y}\left( y \right)
⇔F(x,y)=FX(x)FY(y):
⇔
p
i
j
=
p
i
⋅
⋅
p
⋅
j
\Leftrightarrow p_{{ij}} = p_{i \cdot} \cdot p_{\cdot j}
⇔pij=pi⋅⋅p⋅j(离散型)
⇔
f
(
x
,
y
)
=
f
X
(
x
)
f
Y
(
y
)
\Leftrightarrow f\left( x,y \right) = f_{X}\left( x \right)f_{Y}\left( y \right)
⇔f(x,y)=fX(x)fY(y)(连续型)
X
X
X和
Y
Y
Y的相关性:
相关系数
ρ
X
Y
=
0
\rho_{{XY}} = 0
ρXY=0时,称
X
X
X和
Y
Y
Y不相关,
否则称
X
X
X和
Y
Y
Y相关
6.两个随机变量简单函数的概率分布
离散型:
P
(
X
=
x
i
,
Y
=
y
i
)
=
p
i
j
,
Z
=
g
(
X
,
Y
)
P\left( X = x_{i},Y = y_{i} \right) = p_{{ij}},Z = g\left( X,Y \right)
P(X=xi,Y=yi)=pij,Z=g(X,Y) 则:
P
(
Z
=
z
k
)
=
P
{
g
(
X
,
Y
)
=
z
k
}
=
∑
g
(
x
i
,
y
i
)
=
z
k
P
(
X
=
x
i
,
Y
=
y
j
)
P(Z = z_{k}) = P\left\{ g\left( X,Y \right) = z_{k} \right\} = \sum_{g\left( x_{i},y_{i} \right) = z_{k}}^{}{P\left( X = x_{i},Y = y_{j} \right)}
P(Z=zk)=P{g(X,Y)=zk}=∑g(xi,yi)=zkP(X=xi,Y=yj)
连续型:
(
X
,
Y
)
∼
f
(
x
,
y
)
,
Z
=
g
(
X
,
Y
)
\left( X,Y \right) \sim f\left( x,y \right),Z = g\left( X,Y \right)
(X,Y)∼f(x,y),Z=g(X,Y)
则:
F
z
(
z
)
=
P
{
g
(
X
,
Y
)
≤
z
}
=
∬
g
(
x
,
y
)
≤
z
f
(
x
,
y
)
d
x
d
y
F_{z}\left( z \right) = P\left\{ g\left( X,Y \right) \leq z \right\} = \iint_{g(x,y) \leq z}^{}{f(x,y)dxdy}
Fz(z)=P{g(X,Y)≤z}=∬g(x,y)≤zf(x,y)dxdy,
f
z
(
z
)
=
F
z
′
(
z
)
f_{z}(z) = F'_{z}(z)
fz(z)=Fz′(z)
7.重要公式与结论
(1) 边缘密度公式:
f
X
(
x
)
=
∫
−
∞
+
∞
f
(
x
,
y
)
d
y
,
f_{X}(x) = \int_{- \infty}^{+ \infty}{f(x,y)dy,}
fX(x)=∫−∞+∞f(x,y)dy,
f
Y
(
y
)
=
∫
−
∞
+
∞
f
(
x
,
y
)
d
x
f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}
fY(y)=∫−∞+∞f(x,y)dx
(2)
P
{
(
X
,
Y
)
∈
D
}
=
∬
D
f
(
x
,
y
)
d
x
d
y
P\left\{ \left( X,Y \right) \in D \right\} = \iint_{D}^{}{f\left( x,y \right){dxdy}}
P{(X,Y)∈D}=∬Df(x,y)dxdy
(3) 若
(
X
,
Y
)
(X,Y)
(X,Y)服从二维正态分布
N
(
μ
1
,
μ
2
,
σ
1
2
,
σ
2
2
,
ρ
)
N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)
N(μ1,μ2,σ12,σ22,ρ)
则有:
X
∼
N
(
μ
1
,
σ
1
2
)
,
Y
∼
N
(
μ
2
,
σ
2
2
)
.
X\sim N\left( \mu_{1},\sigma_{1}^{2} \right),Y\sim N(\mu_{2},\sigma_{2}^{2}).
X∼N(μ1,σ12),Y∼N(μ2,σ22).
X
X
X与
Y
Y
Y相互独立
⇔
ρ
=
0
\Leftrightarrow \rho = 0
⇔ρ=0,即
X
X
X与
Y
Y
Y不相关。
C
1
X
+
C
2
Y
∼
N
(
C
1
μ
1
+
C
2
μ
2
,
C
1
2
σ
1
2
+
C
2
2
σ
2
2
+
2
C
1
C
2
σ
1
σ
2
ρ
)
C_{1}X + C_{2}Y\sim N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} + C_{2}^{2}\sigma_{2}^{2} + 2C_{1}C_{2}\sigma_{1}\sigma_{2}\rho)
C1X+C2Y∼N(C1μ1+C2μ2,C12σ12+C22σ22+2C1C2σ1σ2ρ)
X
{\ X}
X关于
Y
=
y
Y=y
Y=y的条件分布为:
N
(
μ
1
+
ρ
σ
1
σ
2
(
y
−
μ
2
)
,
σ
1
2
(
1
−
ρ
2
)
)
N(\mu_{1} + \rho\frac{\sigma_{1}}{\sigma_{2}}(y - \mu_{2}),\sigma_{1}^{2}(1 - \rho^{2}))
N(μ1+ρσ2σ1(y−μ2),σ12(1−ρ2))
Y
Y
Y关于
X
=
x
X = x
X=x的条件分布为:
N
(
μ
2
+
ρ
σ
2
σ
1
(
x
−
μ
1
)
,
σ
2
2
(
1
−
ρ
2
)
)
N(\mu_{2} + \rho\frac{\sigma_{2}}{\sigma_{1}}(x - \mu_{1}),\sigma_{2}^{2}(1 - \rho^{2}))
N(μ2+ρσ1σ2(x−μ1),σ22(1−ρ2))
(4) 若
X
X
X与
Y
Y
Y独立,且分别服从
N
(
μ
1
,
σ
1
2
)
,
N
(
μ
1
,
σ
2
2
)
,
N(\mu_{1},\sigma_{1}^{2}),N(\mu_{1},\sigma_{2}^{2}),
N(μ1,σ12),N(μ1,σ22),
则:
(
X
,
Y
)
∼
N
(
μ
1
,
μ
2
,
σ
1
2
,
σ
2
2
,
0
)
,
\left( X,Y \right)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},0),
(X,Y)∼N(μ1,μ2,σ12,σ22,0),
C
1
X
+
C
2
Y
~
N
(
C
1
μ
1
+
C
2
μ
2
,
C
1
2
σ
1
2
C
2
2
σ
2
2
)
.
C_{1}X + C_{2}Y\tilde{\ }N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} C_{2}^{2}\sigma_{2}^{2}).
C1X+C2Y ~N(C1μ1+C2μ2,C12σ12C22σ22).
(5) 若
X
X
X与
Y
Y
Y相互独立,
f
(
x
)
f\left( x \right)
f(x)和
g
(
x
)
g\left( x \right)
g(x)为连续函数, 则
f
(
X
)
f\left( X \right)
f(X)和
g
(
Y
)
g(Y)
g(Y)也相互独立。
随机变量的数字特征
1.数学期望
离散型:
P
{
X
=
x
i
}
=
p
i
,
E
(
X
)
=
∑
i
x
i
p
i
P\left\{ X = x_{i} \right\} = p_{i},E(X) = \sum_{i}^{}{x_{i}p_{i}}
P{X=xi}=pi,E(X)=∑ixipi;
连续型:
X
∼
f
(
x
)
,
E
(
X
)
=
∫
−
∞
+
∞
x
f
(
x
)
d
x
X\sim f(x),E(X) = \int_{- \infty}^{+ \infty}{xf(x)dx}
X∼f(x),E(X)=∫−∞+∞xf(x)dx
性质:
(1)
E
(
C
)
=
C
,
E
[
E
(
X
)
]
=
E
(
X
)
E(C) = C,E\lbrack E(X)\rbrack = E(X)
E(C)=C,E[E(X)]=E(X)
(2)
E
(
C
1
X
+
C
2
Y
)
=
C
1
E
(
X
)
+
C
2
E
(
Y
)
E(C_{1}X + C_{2}Y) = C_{1}E(X) + C_{2}E(Y)
E(C1X+C2Y)=C1E(X)+C2E(Y)
(3) 若
X
X
X和
Y
Y
Y独立,则
E
(
X
Y
)
=
E
(
X
)
E
(
Y
)
E(XY) = E(X)E(Y)
E(XY)=E(X)E(Y)
(4)
[
E
(
X
Y
)
]
2
≤
E
(
X
2
)
E
(
Y
2
)
\left\lbrack E(XY) \right\rbrack^{2} \leq E(X^{2})E(Y^{2})
[E(XY)]2≤E(X2)E(Y2)
2.方差:
D
(
X
)
=
E
[
X
−
E
(
X
)
]
2
=
E
(
X
2
)
−
[
E
(
X
)
]
2
D(X) = E\left\lbrack X - E(X) \right\rbrack^{2} = E(X^{2}) - \left\lbrack E(X) \right\rbrack^{2}
D(X)=E[X−E(X)]2=E(X2)−[E(X)]2
3.标准差:
D
(
X
)
\sqrt{D(X)}
D(X)
,
4.离散型:
D
(
X
)
=
∑
i
[
x
i
−
E
(
X
)
]
2
p
i
D(X) = \sum_{i}^{}{\left\lbrack x_{i} - E(X) \right\rbrack^{2}p_{i}}
D(X)=∑i[xi−E(X)]2pi
5.连续型:
D
(
X
)
=
∫
−
∞
+
∞
[
x
−
E
(
X
)
]
2
f
(
x
)
d
x
D(X) = {\int_{- \infty}^{+ \infty}\left\lbrack x - E(X) \right\rbrack}^{2}f(x)dx
D(X)=∫−∞+∞[x−E(X)]2f(x)dx
性质:
(1)
D
(
C
)
=
0
,
D
[
E
(
X
)
]
=
0
,
D
[
D
(
X
)
]
=
0
\ D(C) = 0,D\lbrack E(X)\rbrack = 0,D\lbrack D(X)\rbrack = 0
D(C)=0,D[E(X)]=0,D[D(X)]=0
(2)
X
X
X与
Y
Y
Y相互独立,则
D
(
X
±
Y
)
=
D
(
X
)
+
D
(
Y
)
D(X \pm Y) = D(X) + D(Y)
D(X±Y)=D(X)+D(Y)
(3)
D
(
C
1
X
+
C
2
)
=
C
1
2
D
(
X
)
\ D\left( C_{1}X + C_{2} \right) = C_{1}^{2}D\left( X \right)
D(C1X+C2)=C12D(X)
(4) 一般有
D
(
X
±
Y
)
=
D
(
X
)
+
D
(
Y
)
±
2
C
o
v
(
X
,
Y
)
=
D
(
X
)
+
D
(
Y
)
±
2
ρ
D
(
X
)
D
(
Y
)
D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y) = D(X) + D(Y) \pm 2\rho\sqrt{D(X)}\sqrt{D(Y)}
D(X±Y)=D(X)+D(Y)±2Cov(X,Y)=D(X)+D(Y)±2ρD(X)
D(Y)
(5)
D
(
X
)
<
E
(
X
−
C
)
2
,
C
≠
E
(
X
)
\ D\left( X \right) < E\left( X - C \right)^{2},C \neq E\left( X \right)
D(X)<E(X−C)2,C=E(X)
(6)
D
(
X
)
=
0
⇔
P
{
X
=
C
}
=
1
\ D(X) = 0 \Leftrightarrow P\left\{ X = C \right\} = 1
D(X)=0⇔P{X=C}=1
6.随机变量函数的数学期望
(1) 对于函数
Y
=
g
(
x
)
Y = g(x)
Y=g(x)
X
X
X为离散型:
P
{
X
=
x
i
}
=
p
i
,
E
(
Y
)
=
∑
i
g
(
x
i
)
p
i
P\{ X = x_{i}\} = p_{i},E(Y) = \sum_{i}^{}{g(x_{i})p_{i}}
P{X=xi}=pi,E(Y)=∑ig(xi)pi;
X
X
X为连续型:
X
∼
f
(
x
)
,
E
(
Y
)
=
∫
−
∞
+
∞
g
(
x
)
f
(
x
)
d
x
X\sim f(x),E(Y) = \int_{- \infty}^{+ \infty}{g(x)f(x)dx}
X∼f(x),E(Y)=∫−∞+∞g(x)f(x)dx
(2)
Z
=
g
(
X
,
Y
)
Z = g(X,Y)
Z=g(X,Y);
(
X
,
Y
)
∼
P
{
X
=
x
i
,
Y
=
y
j
}
=
p
i
j
\left( X,Y \right)\sim P\{ X = x_{i},Y = y_{j}\} = p_{{ij}}
(X,Y)∼P{X=xi,Y=yj}=pij;
E
(
Z
)
=
∑
i
∑
j
g
(
x
i
,
y
j
)
p
i
j
E(Z) = \sum_{i}^{}{\sum_{j}^{}{g(x_{i},y_{j})p_{{ij}}}}
E(Z)=∑i∑jg(xi,yj)pij
(
X
,
Y
)
∼
f
(
x
,
y
)
\left( X,Y \right)\sim f(x,y)
(X,Y)∼f(x,y);
E
(
Z
)
=
∫
−
∞
+
∞
∫
−
∞
+
∞
g
(
x
,
y
)
f
(
x
,
y
)
d
x
d
y
E(Z) = \int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{g(x,y)f(x,y)dxdy}}
E(Z)=∫−∞+∞∫−∞+∞g(x,y)f(x,y)dxdy
7.协方差
C
o
v
(
X
,
Y
)
=
E
[
(
X
−
E
(
X
)
(
Y
−
E
(
Y
)
)
]
Cov(X,Y) = E\left\lbrack (X - E(X)(Y - E(Y)) \right\rbrack
Cov(X,Y)=E[(X−E(X)(Y−E(Y))]
8.相关系数
ρ
X
Y
=
C
o
v
(
X
,
Y
)
D
(
X
)
D
(
Y
)
\rho_{{XY}} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}
ρXY=D(X)
D(Y)
Cov(X,Y),
k
k
k阶原点矩
E
(
X
k
)
E(X^{k})
E(Xk);
k
k
k阶中心矩
E
{
[
X
−
E
(
X
)
]
k
}
E\left\{ {\lbrack X - E(X)\rbrack}^{k} \right\}
E{[X−E(X)]k}
性质:
(1)
C
o
v
(
X
,
Y
)
=
C
o
v
(
Y
,
X
)
\ Cov(X,Y) = Cov(Y,X)
Cov(X,Y)=Cov(Y,X)
(2)
C
o
v
(
a
X
,
b
Y
)
=
a
b
C
o
v
(
Y
,
X
)
\ Cov(aX,bY) = abCov(Y,X)
Cov(aX,bY)=abCov(Y,X)
(3)
C
o
v
(
X
1
+
X
2
,
Y
)
=
C
o
v
(
X
1
,
Y
)
+
C
o
v
(
X
2
,
Y
)
\ Cov(X_{1} + X_{2},Y) = Cov(X_{1},Y) + Cov(X_{2},Y)
Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)
(4)
∣
ρ
(
X
,
Y
)
∣
≤
1
\ \left| \rho\left( X,Y \right) \right| \leq 1
∣ρ(X,Y)∣≤1
(5)
ρ
(
X
,
Y
)
=
1
⇔
P
(
Y
=
a
X
+
b
)
=
1
\ \rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1
ρ(X,Y)=1⇔P(Y=aX+b)=1 ,其中
a
>
0
a > 0
a>0
ρ
(
X
,
Y
)
=
−
1
⇔
P
(
Y
=
a
X
+
b
)
=
1
\rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1
ρ(X,Y)=−1⇔P(Y=aX+b)=1
,其中
a
<
0
a < 0
a<0
9.重要公式与结论
(1)
D
(
X
)
=
E
(
X
2
)
−
E
2
(
X
)
\ D(X) = E(X^{2}) - E^{2}(X)
D(X)=E(X2)−E2(X)
(2)
C
o
v
(
X
,
Y
)
=
E
(
X
Y
)
−
E
(
X
)
E
(
Y
)
\ Cov(X,Y) = E(XY) - E(X)E(Y)
Cov(X,Y)=E(XY)−E(X)E(Y)
(3)
∣
ρ
(
X
,
Y
)
∣
≤
1
,
\left| \rho\left( X,Y \right) \right| \leq 1,
∣ρ(X,Y)∣≤1,且
ρ
(
X
,
Y
)
=
1
⇔
P
(
Y
=
a
X
+
b
)
=
1
\rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1
ρ(X,Y)=1⇔P(Y=aX+b)=1,其中
a
>
0
a > 0
a>0
ρ
(
X
,
Y
)
=
−
1
⇔
P
(
Y
=
a
X
+
b
)
=
1
\rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1
ρ(X,Y)=−1⇔P(Y=aX+b)=1,其中
a
<
0
a < 0
a<0
(4) 下面5个条件互为充要条件:
ρ
(
X
,
Y
)
=
0
\rho(X,Y) = 0
ρ(X,Y)=0
⇔
C
o
v
(
X
,
Y
)
=
0
\Leftrightarrow Cov(X,Y) = 0
⇔Cov(X,Y)=0
⇔
E
(
X
,
Y
)
=
E
(
X
)
E
(
Y
)
\Leftrightarrow E(X,Y) = E(X)E(Y)
⇔E(X,Y)=E(X)E(Y)
⇔
D
(
X
+
Y
)
=
D
(
X
)
+
D
(
Y
)
\Leftrightarrow D(X + Y) = D(X) + D(Y)
⇔D(X+Y)=D(X)+D(Y)
⇔
D
(
X
−
Y
)
=
D
(
X
)
+
D
(
Y
)
\Leftrightarrow D(X - Y) = D(X) + D(Y)
⇔D(X−Y)=D(X)+D(Y)
注:
X
X
X与
Y
Y
Y独立为上述5个条件中任何一个成立的充分条件,但非必要条件。
数理统计的基本概念
1.基本概念
总体:研究对象的全体,它是一个随机变量,用
X
X
X表示。
个体:组成总体的每个基本元素。
简单随机样本:来自总体
X
X
X的
n
n
n个相互独立且与总体同分布的随机变量
X
1
,
X
2
⋯
,
X
n
X_{1},X_{2}\cdots,X_{n}
X1,X2⋯,Xn,称为容量为
n
n
n的简单随机样本,简称样本。
统计量:设
X
1
,
X
2
⋯
,
X
n
,
X_{1},X_{2}\cdots,X_{n},
X1,X2⋯,Xn,是来自总体
X
X
X的一个样本,
g
(
X
1
,
X
2
⋯
,
X
n
)
g(X_{1},X_{2}\cdots,X_{n})
g(X1,X2⋯,Xn))是样本的连续函数,且
g
(
)
g()
g()中不含任何未知参数,则称
g
(
X
1
,
X
2
⋯
,
X
n
)
g(X_{1},X_{2}\cdots,X_{n})
g(X1,X2⋯,Xn)为统计量。
样本均值:
X
‾
=
1
n
∑
i
=
1
n
X
i
\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}
X=n1∑i=1nXi
样本方差:
S
2
=
1
n
−
1
∑
i
=
1
n
(
X
i
−
X
‾
)
2
S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{2}
S2=n−11∑i=1n(Xi−X)2
样本矩:样本
k
k
k阶原点矩:
A
k
=
1
n
∑
i
=
1
n
X
i
k
,
k
=
1
,
2
,
⋯
A_{k} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}^{k},k = 1,2,\cdots
Ak=n1∑i=1nXik,k=1,2,⋯
样本
k
k
k阶中心矩:
B
k
=
1
n
∑
i
=
1
n
(
X
i
−
X
‾
)
k
,
k
=
1
,
2
,
⋯
B_{k} = \frac{1}{n}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{k},k = 1,2,\cdots
Bk=n1∑i=1n(Xi−X)k,k=1,2,⋯
2.分布
χ
2
\chi^{2}
χ2分布:
χ
2
=
X
1
2
+
X
2
2
+
⋯
+
X
n
2
∼
χ
2
(
n
)
\chi^{2} = X_{1}^{2} + X_{2}^{2} + \cdots + X_{n}^{2}\sim\chi^{2}(n)
χ2=X12+X22+⋯+Xn2∼χ2(n),其中
X
1
,
X
2
⋯
,
X
n
,
X_{1},X_{2}\cdots,X_{n},
X1,X2⋯,Xn,相互独立,且同服从
N
(
0
,
1
)
N(0,1)
N(0,1)
t
t
t分布:
T
=
X
Y
/
n
∼
t
(
n
)
T = \frac{X}{\sqrt{Y/n}}\sim t(n)
T=Y/n
X∼t(n) ,其中
X
∼
N
(
0
,
1
)
,
Y
∼
χ
2
(
n
)
,
X\sim N\left( 0,1 \right),Y\sim\chi^{2}(n),
X∼N(0,1),Y∼χ2(n),且
X
X
X,
Y
Y
Y 相互独立。
F
F
F分布:
F
=
X
/
n
1
Y
/
n
2
∼
F
(
n
1
,
n
2
)
F = \frac{X/n_{1}}{Y/n_{2}}\sim F(n_{1},n_{2})
F=Y/n2X/n1∼F(n1,n2),其中
X
∼
χ
2
(
n
1
)
,
Y
∼
χ
2
(
n
2
)
,
X\sim\chi^{2}\left( n_{1} \right),Y\sim\chi^{2}(n_{2}),
X∼χ2(n1),Y∼χ2(n2),且
X
X
X,
Y
Y
Y相互独立。
分位数:若
P
(
X
≤
x
α
)
=
α
,
P(X \leq x_{\alpha}) = \alpha,
P(X≤xα)=α,则称
x
α
x_{\alpha}
xα为
X
X
X的
α
\alpha
α分位数
3.正态总体的常用样本分布
(1) 设
X
1
,
X
2
⋯
,
X
n
X_{1},X_{2}\cdots,X_{n}
X1,X2⋯,Xn为来自正态总体
N
(
μ
,
σ
2
)
N(\mu,\sigma^{2})
N(μ,σ2)的样本,
X
‾
=
1
n
∑
i
=
1
n
X
i
,
S
2
=
1
n
−
1
∑
i
=
1
n
(
X
i
−
X
‾
)
2
,
\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i},S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2},}
X=n1∑i=1nXi,S2=n−11∑i=1n(Xi−X)2,则:
X
‾
∼
N
(
μ
,
σ
2
n
)
\overline{X}\sim N\left( \mu,\frac{\sigma^{2}}{n} \right){\ \ }
X∼N(μ,nσ2) 或者
X
‾
−
μ
σ
n
∼
N
(
0
,
1
)
\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1)
n
σX−μ∼N(0,1)
(
n
−
1
)
S
2
σ
2
=
1
σ
2
∑
i
=
1
n
(
X
i
−
X
‾
)
2
∼
χ
2
(
n
−
1
)
\frac{(n - 1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2}\sim\chi^{2}(n - 1)}
σ2(n−1)S2=σ21∑i=1n(Xi−X)2∼χ2(n−1)
1
σ
2
∑
i
=
1
n
(
X
i
−
μ
)
2
∼
χ
2
(
n
)
\frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \mu)}^{2}\sim\chi^{2}(n)}
σ21∑i=1n(Xi−μ)2∼χ2(n)
4)
X
‾
−
μ
S
/
n
∼
t
(
n
−
1
)
{\ \ }\frac{\overline{X} - \mu}{S/\sqrt{n}}\sim t(n - 1)
S/n
X−μ∼t(n−1)
4.重要公式与结论
(1) 对于
χ
2
∼
χ
2
(
n
)
\chi^{2}\sim\chi^{2}(n)
χ2∼χ2(n),有
E
(
χ
2
(
n
)
)
=
n
,
D
(
χ
2
(
n
)
)
=
2
n
;
E(\chi^{2}(n)) = n,D(\chi^{2}(n)) = 2n;
E(χ2(n))=n,D(χ2(n))=2n;
(2) 对于
T
∼
t
(
n
)
T\sim t(n)
T∼t(n),有
E
(
T
)
=
0
,
D
(
T
)
=
n
n
−
2
(
n
>
2
)
E(T) = 0,D(T) = \frac{n}{n - 2}(n > 2)
E(T)=0,D(T)=n−2n(n>2);
(3) 对于
F
~
F
(
m
,
n
)
F\tilde{\ }F(m,n)
F ~F(m,n),有
1
F
∼
F
(
n
,
m
)
,
F
a
/
2
(
m
,
n
)
=
1
F
1
−
a
/
2
(
n
,
m
)
;
\frac{1}{F}\sim F(n,m),F_{a/2}(m,n) = \frac{1}{F_{1 - a/2}(n,m)};
F1∼F(n,m),Fa/2(m,n)=F1−a/2(n,m)1;
(4) 对于任意总体
X
X
X,有
E
(
X
‾
)
=
E
(
X
)
,
E
(
S
2
)
=
D
(
X
)
,
D
(
X
‾
)
=
D
(
X
)
n
E(\overline{X}) = E(X),E(S^{2}) = D(X),D(\overline{X}) = \frac{D(X)}{n}
E(X)=E(X),E(S2)=D(X),D(X)=nD(X)
pandlepanlde-01-必备数学知识的更多相关文章
- 《DirectX 9.0 3D游戏开发编程基础》必备的数学知识 读书笔记
最近在看游戏导航源码,但是看了几天感觉看不懂.里面全是一些几何运算,以及一些关于3d方面的知识.发现自己缺少3d这方面的知识,正好也想研究一下3d游戏开发的基本原理,于是决定买本书看看了,后来在ope ...
- Machine Learning Algorithms Study Notes(6)—遗忘的数学知识
机器学习中遗忘的数学知识 最大似然估计( Maximum likelihood ) 最大似然估计,也称为最大概似估计,是一种统计方法,它用来求一个样本集的相关概率密度函数的参数.这个方法最早是遗传学家 ...
- tensorflow学习笔记(3)前置数学知识
tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个 b为4* ...
- java必备基础知识(一)
学习的一点建议: 每一门语言的学习都要从基础知识开始,学习是一个过程,"万丈高楼平地起",没有一个好的地基,想必再豪华的高楼大厦终究有一天会倒塌.因此,我们学习知识也要打牢根基,厚 ...
- Rightmost Digit(快速幂+数学知识OR位运算) 分类: 数学 2015-07-03 14:56 4人阅读 评论(0) 收藏
C - Rightmost Digit Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit ...
- codeforces#253 D - Andrey and Problem里的数学知识
这道题是这种,给主人公一堆事件的成功概率,他仅仅想恰好成功一件. 于是,问题来了,他要选择哪些事件去做,才干使他的想法实现的概率最大. 我的第一个想法是枚举,枚举的话我想到用dfs,但是认为太麻烦. ...
- Directx11学习笔记【五】 基本的数学知识----向量篇
本文参考dx11龙书 Chapter1 vector algebra(向量代数) 要想学好游戏编程,扎实的数学知识是尤为重要的,下面将对dx11龙书中有关向量的数学知识做一下总结. 在数学中,几何向量 ...
- SSAS系列——【01】准备知识
原文:SSAS系列--[01]准备知识 关于SQL Server 产品,我从2004年就开始使用了,SQL Server 2K,2K5,2K8,到如今已经准6年了,说来惭愧,这六年来所涉及的内容都是在 ...
- SQL点滴17—使用数据库引擎存储过程,系统视图查询,DBA,BI开发人员必备基础知识
原文:SQL点滴17-使用数据库引擎存储过程,系统视图查询,DBA,BI开发人员必备基础知识 在开发过程中会遇到需要弄清楚这个数据库什么时候建的,这个数据库中有多少表,这个存储过程长的什么样子等等信息 ...
- 3D Game Programming withDX11 学习笔记(一) 数学知识总结
在图形学中,数学是不可或缺的一部分,所以本书最开始的部分就是数学知识的复习.在图形学中,最常用的是矢量和矩阵,所以我根据前面三个章节的数学知识,总结一下数学知识. 一.矢量 数学中的矢量,拥有方向和长 ...
随机推荐
- QT网络编程【一】
1.QUdpSocket头文件无法识别怎么解决? 问题原因:qmake没有添加network的模块.在工程配置文件中添加配置即可. 2.选择c++的socket库还是QUdpSocket? 3.同样的 ...
- Vue 使用插件nprogress页面加载进度条
下载 npm i nprogress 在main.js中引入: import App from './App' import VueRouter from 'vue-router' import ro ...
- 更新Vue-cli4与Eslint插件自动保存
Vue-cli更新 此更新为Vue-cli3更新为4,可使用node来查看本机的安装版本,vue -V,此版本(cli4)需要node v8.9 或更高版本 (推荐 v10 以上),查看node版本可 ...
- P2345 [USACO04OPEN] MooFest G
简单的一个分块处理:优雅的暴力枚举 #include<bits/stdc++.h>using namespace std; typedef long long ll;const int N ...
- 使用 netstat 命令监视网络状态
在linux 系统网络出现问题时可以使用netstat -s 来分析问题 使用 netstat 命令监视网络状态 netstat 命令生成包含网络状态和协议统计信息的显示内容.可以通过表格形式显示 T ...
- ANOMALY: use of REX.w is meaningless (default operand size is 64)
1.打开注册机:win+ R 输入regedit2.找到目录:计算机\HKEY_LOCAL_MACHINE\SOFTWARE\TEC\Ocular.3\agent\config 并添加值3.新增项 ...
- 利用Vue技术实现的查询所有和添加功能
就是根据Vue本身的特性,对之前写过的JSON等进行页面代码的简化. 其中,有俩点,需要明白一下: 在body标签里面,使用div标签,将列表数据包住,并设置一个id,便于vue对其的引用 在使用vu ...
- Typora编辑区域空白过大问题
参考博客:https://blog.csdn.net/m0_55485287/article/details/115207178 在哪个文件编辑? 1.找到使用的主题,打开主题文件夹 2.找到对应的c ...
- (3) MasaFramework 入门第三篇,使用MasaFramework
首先我们需要创建一个MasaFramework模板的项目,项目名称TokenDemo,项目类型如图所示 删除Web/TokenDemo.Admin项目,新建Masa Blazor Pro项目模板 项目 ...
- .NET应用系统的国际化-基于Roslyn抽取词条、更新代码
上篇文章我们介绍了 VUE+.NET应用系统的国际化-多语言词条服务 系统国际化改造整体设计思路如下: 提供一个工具,识别前后端代码中的中文,形成多语言词条,按语言.界面.模块统一管理多有的多语言词条 ...