必备数学知识


在入门深度学习目标检测领域之前,先给大家补点数学知识,因为无论是深度学习还是机器学习,背后都是有一些数学原理和公式推导的,所以掌握必备的数学知识必不可少,下面会给大家简单科普下常用的数学知识有哪些~

数学基础知识

数据科学需要一定的数学基础,但仅仅做应用的话,如果时间不多,不用学太深,了解基本公式即可,遇到问题再查吧。

下面是常见的一些数学基础概念,建议大家收藏后再仔细阅读,遇到不懂的概念可以直接在这里查~

高等数学

1.导数定义:

导数和微分的概念

f

(

x

0

)

=

lim

Δ

x

0

f

(

x

0

+

Δ

x

)

f

(

x

0

)

Δ

x

f'({{x}_{0}})=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}

f′(x0​)=Δx→0lim​Δxf(x0​+Δx)−f(x0​)​ (1)

或者:

f

(

x

0

)

=

lim

x

x

0

f

(

x

)

f

(

x

0

)

x

x

0

f'({{x}_{0}})=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}}

f′(x0​)=x→x0​lim​x−x0​f(x)−f(x0​)​ (2)

2.左右导数导数的几何意义和物理意义

函数

f

(

x

)

f(x)

f(x)在

x

0

x_0

x0​处的左、右导数分别定义为:

左导数:

f

(

x

0

)

=

lim

Δ

x

0

f

(

x

0

+

Δ

x

)

f

(

x

0

)

Δ

x

=

lim

x

x

0

f

(

x

)

f

(

x

0

)

x

x

0

,

(

x

=

x

0

+

Δ

x

)

{{{f}'}_{-}}({{x}_{0}})=\underset{\Delta x\to {{0}^{-}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}},(x={{x}_{0}}+\Delta x)

f′−​(x0​)=Δx→0−lim​Δxf(x0​+Δx)−f(x0​)​=x→x0−​lim​x−x0​f(x)−f(x0​)​,(x=x0​+Δx)

右导数:

f

+

(

x

0

)

=

lim

Δ

x

0

+

f

(

x

0

+

Δ

x

)

f

(

x

0

)

Δ

x

=

lim

x

x

0

+

f

(

x

)

f

(

x

0

)

x

x

0

{{{f}'}_{+}}({{x}_{0}})=\underset{\Delta x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}}

f′+​(x0​)=Δx→0+lim​Δxf(x0​+Δx)−f(x0​)​=x→x0+​lim​x−x0​f(x)−f(x0​)​

3.函数的可导性与连续性之间的关系

Th1: 函数

f

(

x

)

f(x)

f(x)在

x

0

x_0

x0​处可微

f

(

x

)

\Leftrightarrow f(x)

⇔f(x)在

x

0

x_0

x0​处可导

Th2: 若函数在点

x

0

x_0

x0​处可导,则

y

=

f

(

x

)

y=f(x)

y=f(x)在点

x

0

x_0

x0​处连续,反之则不成立。即函数连续不一定可导。

Th3:

f

(

x

0

)

{f}'({{x}_{0}})

f′(x0​)存在

f

(

x

0

)

=

f

+

(

x

0

)

\Leftrightarrow {{{f}'}_{-}}({{x}_{0}})={{{f}'}_{+}}({{x}_{0}})

⇔f′−​(x0​)=f′+​(x0​)

4.平面曲线的切线和法线

切线方程 :

y

y

0

=

f

(

x

0

)

(

x

x

0

)

y-{{y}_{0}}=f'({{x}_{0}})(x-{{x}_{0}})

y−y0​=f′(x0​)(x−x0​)
法线方程:

y

y

0

=

1

f

(

x

0

)

(

x

x

0

)

,

f

(

x

0

)

0

y-{{y}_{0}}=-\frac{1}{f'({{x}_{0}})}(x-{{x}_{0}}),f'({{x}_{0}})\ne 0

y−y0​=−f′(x0​)1​(x−x0​),f′(x0​)​=0

5.四则运算法则
设函数

u

=

u

(

x

)

v

=

v

(

x

)

u=u(x),v=v(x)

u=u(x),v=v(x)]在点

x

x

x可导则
(1)

(

u

±

v

)

=

u

±

v

(u\pm v{)}'={u}'\pm {v}'

(u±v)′=u′±v′

d

(

u

±

v

)

=

d

u

±

d

v

d(u\pm v)=du\pm dv

d(u±v)=du±dv
(2)

(

u

v

)

=

u

v

+

v

u

(uv{)}'=u{v}'+v{u}'

(uv)′=uv′+vu′

d

(

u

v

)

=

u

d

v

+

v

d

u

d(uv)=udv+vdu

d(uv)=udv+vdu
(3)

(

u

v

)

=

v

u

u

v

v

2

(

v

0

)

(\frac{u}{v}{)}'=\frac{v{u}'-u{v}'}{{{v}^{2}}}(v\ne 0)

(vu​)′=v2vu′−uv′​(v​=0)

d

(

u

v

)

=

v

d

u

u

d

v

v

2

d(\frac{u}{v})=\frac{vdu-udv}{{{v}^{2}}}

d(vu​)=v2vdu−udv​

6.基本导数与微分表
(1)

y

=

c

y=c

y=c(常数)

y

=

0

{y}'=0

y′=0

d

y

=

0

dy=0

dy=0
(2)

y

=

x

α

y={{x}^{\alpha }}

y=xα(

α

\alpha

α为实数)

y

=

α

x

α

1

{y}'=\alpha {{x}^{\alpha -1}}

y′=αxα−1

d

y

=

α

x

α

1

d

x

dy=\alpha {{x}^{\alpha -1}}dx

dy=αxα−1dx
(3)

y

=

a

x

y={{a}^{x}}

y=ax

y

=

a

x

ln

a

{y}'={{a}^{x}}\ln a

y′=axlna

d

y

=

a

x

ln

a

d

x

dy={{a}^{x}}\ln adx

dy=axlnadx
特例:

(

e

x

)

=

e

x

({{{e}}^{x}}{)}'={{{e}}^{x}}

(ex)′=ex

d

(

e

x

)

=

e

x

d

x

d({{{e}}^{x}})={{{e}}^{x}}dx

d(ex)=exdx

(4)

y

=

log

a

x

y={{\log }_{a}}x

y=loga​x

y

=

1

x

ln

a

{y}'=\frac{1}{x\ln a}

y′=xlna1​

d

y

=

1

x

ln

a

d

x

dy=\frac{1}{x\ln a}dx

dy=xlna1​dx
特例:

y

=

ln

x

y=\ln x

y=lnx

(

ln

x

)

=

1

x

(\ln x{)}'=\frac{1}{x}

(lnx)′=x1​

d

(

ln

x

)

=

1

x

d

x

d(\ln x)=\frac{1}{x}dx

d(lnx)=x1​dx

(5)

y

=

sin

x

y=\sin x

y=sinx

y

=

cos

x

{y}'=\cos x

y′=cosx

d

(

sin

x

)

=

cos

x

d

x

d(\sin x)=\cos xdx

d(sinx)=cosxdx

(6)

y

=

cos

x

y=\cos x

y=cosx

y

=

sin

x

{y}'=-\sin x

y′=−sinx

d

(

cos

x

)

=

sin

x

d

x

d(\cos x)=-\sin xdx

d(cosx)=−sinxdx

(7)

y

=

tan

x

y=\tan x

y=tanx

y

=

1

cos

2

x

=

sec

2

x

{y}'=\frac{1}{{{\cos }^{2}}x}={{\sec }^{2}}x

y′=cos2x1​=sec2x

d

(

tan

x

)

=

sec

2

x

d

x

d(\tan x)={{\sec }^{2}}xdx

d(tanx)=sec2xdx
(8)

y

=

cot

x

y=\cot x

y=cotx

y

=

1

sin

2

x

=

csc

2

x

{y}'=-\frac{1}{{{\sin }^{2}}x}=-{{\csc }^{2}}x

y′=−sin2x1​=−csc2x

d

(

cot

x

)

=

csc

2

x

d

x

d(\cot x)=-{{\csc }^{2}}xdx

d(cotx)=−csc2xdx
(9)

y

=

sec

x

y=\sec x

y=secx

y

=

sec

x

tan

x

{y}'=\sec x\tan x

y′=secxtanx

d

(

sec

x

)

=

sec

x

tan

x

d

x

d(\sec x)=\sec x\tan xdx

d(secx)=secxtanxdx
(10)

y

=

csc

x

y=\csc x

y=cscx

y

=

csc

x

cot

x

{y}'=-\csc x\cot x

y′=−cscxcotx

d

(

csc

x

)

=

csc

x

cot

x

d

x

d(\csc x)=-\csc x\cot xdx

d(cscx)=−cscxcotxdx
(11)

y

=

arcsin

x

y=\arcsin x

y=arcsinx

y

=

1

1

x

2

{y}'=\frac{1}{\sqrt{1-{{x}^{2}}}}

y′=1−x2

​1​

d

(

arcsin

x

)

=

1

1

x

2

d

x

d(\arcsin x)=\frac{1}{\sqrt{1-{{x}^{2}}}}dx

d(arcsinx)=1−x2

​1​dx
(12)

y

=

arccos

x

y=\arccos x

y=arccosx

y

=

1

1

x

2

{y}'=-\frac{1}{\sqrt{1-{{x}^{2}}}}

y′=−1−x2

​1​

d

(

arccos

x

)

=

1

1

x

2

d

x

d(\arccos x)=-\frac{1}{\sqrt{1-{{x}^{2}}}}dx

d(arccosx)=−1−x2

​1​dx

(13)

y

=

arctan

x

y=\arctan x

y=arctanx

y

=

1

1

+

x

2

{y}'=\frac{1}{1+{{x}^{2}}}

y′=1+x21​

d

(

arctan

x

)

=

1

1

+

x

2

d

x

d(\arctan x)=\frac{1}{1+{{x}^{2}}}dx

d(arctanx)=1+x21​dx

(14)

y

=

arc

cot

x

y=\operatorname{arc}\cot x

y=arccotx

y

=

1

1

+

x

2

{y}'=-\frac{1}{1+{{x}^{2}}}

y′=−1+x21​

d

(

arc

cot

x

)

=

1

1

+

x

2

d

x

d(\operatorname{arc}\cot x)=-\frac{1}{1+{{x}^{2}}}dx

d(arccotx)=−1+x21​dx
(15)

y

=

s

h

x

y=shx

y=shx

y

=

c

h

x

{y}'=chx

y′=chx

d

(

s

h

x

)

=

c

h

x

d

x

d(shx)=chxdx

d(shx)=chxdx

(16)

y

=

c

h

x

y=chx

y=chx

y

=

s

h

x

{y}'=shx

y′=shx

d

(

c

h

x

)

=

s

h

x

d

x

d(chx)=shxdx

d(chx)=shxdx

7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法

(1) 反函数的运算法则: 设

y

=

f

(

x

)

y=f(x)

y=f(x)在点

x

x

x的某邻域内单调连续,在点

x

x

x处可导且

f

(

x

)

0

{f}'(x)\ne 0

f′(x)​=0,则其反函数在点

x

x

x所对应的

y

y

y处可导,并且有

d

y

d

x

=

1

d

x

d

y

\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}

dxdy​=dydx​1​
(2) 复合函数的运算法则:若

μ

=

φ

(

x

)

\mu =\varphi(x)

μ=φ(x) 在点

x

x

x可导,而

y

=

f

(

μ

)

y=f(\mu)

y=f(μ)在对应点

μ

\mu

μ(

μ

=

φ

(

x

)

\mu =\varphi (x)

μ=φ(x))可导,则复合函数

y

=

f

(

φ

(

x

)

)

y=f(\varphi (x))

y=f(φ(x))在点

x

x

x可导,且

y

=

f

(

μ

)

φ

(

x

)

{y}'={f}'(\mu )\cdot {\varphi }'(x)

y′=f′(μ)⋅φ′(x)
(3) 隐函数导数

d

y

d

x

\frac{dy}{dx}

dxdy​的求法一般有三种方法:
1)方程两边对

x

x

x求导,要记住

y

y

y是

x

x

x的函数,则

y

y

y的函数是

x

x

x的复合函数.例如

1

y

\frac{1}{y}

y1​,

y

2

{{y}^{2}}

y2,

l

n

y

ln y

lny,

e

y

{{{e}}^{y}}

ey等均是

x

x

x的复合函数.

x

x

x求导应按复合函数连锁法则做.
2)公式法.由

F

(

x

,

y

)

=

0

F(x,y)=0

F(x,y)=0知

d

y

d

x

=

F

x

(

x

,

y

)

F

y

(

x

,

y

)

\frac{dy}{dx}=-\frac{{{{{F}'}}_{x}}(x,y)}{{{{{F}'}}_{y}}(x,y)}

dxdy​=−F′y​(x,y)F′x​(x,y)​,其中,

F

x

(

x

,

y

)

{{{F}'}_{x}}(x,y)

F′x​(x,y),

F

y

(

x

,

y

)

{{{F}'}_{y}}(x,y)

F′y​(x,y)分别表示

F

(

x

,

y

)

F(x,y)

F(x,y)对

x

x

x和

y

y

y的偏导数
3)利用微分形式不变性

8.常用高阶导数公式

(1)

(

a

x

)

(

n

)

=

a

x

ln

n

a

(

a

>

0

)

(

e

x

)

(

n

)

=

e

x

({{a}^{x}}){{\,}^{(n)}}={{a}^{x}}{{\ln }^{n}}a\quad (a>{0})\quad \quad ({{{e}}^{x}}){{\,}^{(n)}}={e}{{\,}^{x}}

(ax)(n)=axlnna(a>0)(ex)(n)=ex
(2)

(

sin

k

x

)

(

n

)

=

k

n

sin

(

k

x

+

n

π

2

)

(\sin kx{)}{{\,}^{(n)}}={{k}^{n}}\sin (kx+n\cdot \frac{\pi }{{2}})

(sinkx)(n)=knsin(kx+n⋅2π​)
(3)

(

cos

k

x

)

(

n

)

=

k

n

cos

(

k

x

+

n

π

2

)

(\cos kx{)}{{\,}^{(n)}}={{k}^{n}}\cos (kx+n\cdot \frac{\pi }{{2}})

(coskx)(n)=kncos(kx+n⋅2π​)
(4)

(

x

m

)

(

n

)

=

m

(

m

1

)

(

m

n

+

1

)

x

m

n

({{x}^{m}}){{\,}^{(n)}}=m(m-1)\cdots (m-n+1){{x}^{m-n}}

(xm)(n)=m(m−1)⋯(m−n+1)xm−n
(5)

(

ln

x

)

(

n

)

=

(

1

)

(

n

1

)

(

n

1

)

!

x

n

(\ln x){{\,}^{(n)}}={{(-{1})}^{(n-{1})}}\frac{(n-{1})!}{{{x}^{n}}}

(lnx)(n)=(−1)(n−1)xn(n−1)!​
(6)莱布尼兹公式:若

u

(

x

)

,

v

(

x

)

u(x)\,,v(x)

u(x),v(x)均

n

n

n阶可导,则

(

u

v

)

(

n

)

=

i

=

0

n

c

n

i

u

(

i

)

v

(

n

i

)

{{(uv)}^{(n)}}=\sum\limits_{i={0}}^{n}{c_{n}^{i}{{u}^{(i)}}{{v}^{(n-i)}}}

(uv)(n)=i=0∑n​cni​u(i)v(n−i),其中

u

(

0

)

=

u

{{u}^{({0})}}=u

u(0)=u,

v

(

0

)

=

v

{{v}^{({0})}}=v

v(0)=v

9.微分中值定理,泰勒公式

Th1:(费马定理)

若函数

f

(

x

)

f(x)

f(x)满足条件:
(1)函数

f

(

x

)

f(x)

f(x)在

x

0

{{x}_{0}}

x0​的某邻域内有定义,并且在此邻域内恒有

f

(

x

)

f

(

x

0

)

f(x)\le f({{x}_{0}})

f(x)≤f(x0​)或

f

(

x

)

f

(

x

0

)

f(x)\ge f({{x}_{0}})

f(x)≥f(x0​),

(2)

f

(

x

)

f(x)

f(x)在

x

0

{{x}_{0}}

x0​处可导,则有

f

(

x

0

)

=

0

{f}'({{x}_{0}})=0

f′(x0​)=0

Th2:(罗尔定理)

设函数

f

(

x

)

f(x)

f(x)满足条件:
(1)在闭区间

[

a

,

b

]

[a,b]

[a,b]上连续;

(2)在

(

a

,

b

)

(a,b)

(a,b)内可导;

(3)

f

(

a

)

=

f

(

b

)

f(a)=f(b)

f(a)=f(b);

则在

(

a

,

b

)

(a,b)

(a,b)内一存在个$xi $,使

f

(

ξ

)

=

0

{f}'(\xi )=0

f′(ξ)=0
Th3: (拉格朗日中值定理)

设函数

f

(

x

)

f(x)

f(x)满足条件:
(1)在

[

a

,

b

]

[a,b]

[a,b]上连续;

(2)在

(

a

,

b

)

(a,b)

(a,b)内可导;

则在

(

a

,

b

)

(a,b)

(a,b)内一存在个$\xi $,使

f

(

b

)

f

(

a

)

b

a

=

f

(

ξ

)

\frac{f(b)-f(a)}{b-a}={f}'(\xi )

b−af(b)−f(a)​=f′(ξ)

Th4: (柯西中值定理)

设函数

f

(

x

)

f(x)

f(x),

g

(

x

)

g(x)

g(x)满足条件:
(1) 在

[

a

,

b

]

[a,b]

[a,b]上连续;

(2) 在

(

a

,

b

)

(a,b)

(a,b)内可导且

f

(

x

)

{f}'(x)

f′(x),

g

(

x

)

{g}'(x)

g′(x)均存在,且

g

(

x

)

0

{g}'(x)\ne 0

g′(x)​=0

则在

(

a

,

b

)

(a,b)

(a,b)内存在一个$\xi $,使

f

(

b

)

f

(

a

)

g

(

b

)

g

(

a

)

=

f

(

ξ

)

g

(

ξ

)

\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{{f}'(\xi )}{{g}'(\xi )}

g(b)−g(a)f(b)−f(a)​=g′(ξ)f′(ξ)​

10.洛必达法则
法则Ⅰ (

0

0

\frac{0}{0}

00​型)
设函数

f

(

x

)

,

g

(

x

)

f\left( x \right),g\left( x \right)

f(x),g(x)满足条件:

lim

x

x

0

f

(

x

)

=

0

,

lim

x

x

0

g

(

x

)

=

0

\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=0

x→x0​lim​f(x)=0,x→x0​lim​g(x)=0;

f

(

x

)

,

g

(

x

)

f\left( x \right),g\left( x \right)

f(x),g(x)在

x

0

{{x}_{0}}

x0​的邻域内可导,(在

x

0

{{x}_{0}}

x0​处可除外)且

g

(

x

)

0

{g}'\left( x \right)\ne 0

g′(x)​=0;

lim

x

x

0

f

(

x

)

g

(

x

)

\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}

x→x0​lim​g′(x)f′(x)​存在(或$\infty $)。

则:

lim

x

x

0

f

(

x

)

g

(

x

)

=

lim

x

x

0

f

(

x

)

g

(

x

)

\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}

x→x0​lim​g(x)f(x)​=x→x0​lim​g′(x)f′(x)​。
法则

I

{{I}'}

I′ (

0

0

\frac{0}{0}

00​型)设函数

f

(

x

)

,

g

(

x

)

f\left( x \right),g\left( x \right)

f(x),g(x)满足条件:

lim

x

f

(

x

)

=

0

,

lim

x

g

(

x

)

=

0

\underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=0

x→∞lim​f(x)=0,x→∞lim​g(x)=0;

存在一个

X

>

0

X>0

X>0,当

x

>

X

\left| x \right|>X

∣x∣>X时,

f

(

x

)

,

g

(

x

)

f\left( x \right),g\left( x \right)

f(x),g(x)可导,且

g

(

x

)

0

{g}'\left( x \right)\ne 0

g′(x)​=0;

lim

x

x

0

f

(

x

)

g

(

x

)

\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}

x→x0​lim​g′(x)f′(x)​存在(或$\infty $)。

lim

x

x

0

f

(

x

)

g

(

x

)

=

lim

x

x

0

f

(

x

)

g

(

x

)

\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}

x→x0​lim​g(x)f(x)​=x→x0​lim​g′(x)f′(x)​
法则Ⅱ(

\frac{\infty }{\infty }

∞∞​ 型) 设函数

f

(

x

)

,

g

(

x

)

f\left( x \right),g\left( x \right)

f(x),g(x) 满足条件:

lim

x

x

0

f

(

x

)

=

,

lim

x

x

0

g

(

x

)

=

\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=\infty,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=\infty

x→x0​lim​f(x)=∞,x→x0​lim​g(x)=∞;

f

(

x

)

,

g

(

x

)

f\left( x \right),g\left( x \right)

f(x),g(x) 在

x

0

{{x}_{0}}

x0​ 的邻域内可导(在

x

0

{{x}_{0}}

x0​处可除外)且

g

(

x

)

0

{g}'\left( x \right)\ne 0

g′(x)​=0;

lim

x

x

0

f

(

x

)

g

(

x

)

\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}

x→x0​lim​g′(x)f′(x)​ 存在(或$\infty

)

)。 则

)。则

lim

x

x

0

f

(

x

)

g

(

x

)

=

lim

x

x

0

f

(

x

)

g

(

x

)

\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}

x→x0​lim​g(x)f(x)​=x→x0​lim​g′(x)f′(x)​$ 同理法则

I

I

{I{I}'}

II′ (

\frac{\infty }{\infty }

∞∞​ 型)仿法则

I

{{I}'}

I′ 可写出。

11.泰勒公式

设函数

f

(

x

)

f(x)

f(x)在点

x

0

{{x}_{0}}

x0​处的某邻域内具有

n

+

1

n+1

n+1阶导数,则对该邻域内异于

x

0

{{x}_{0}}

x0​的任意点

x

x

x,在

x

0

{{x}_{0}}

x0​与

x

x

x之间至少存在
一个

ξ

\xi

ξ,使得:

f

(

x

)

=

f

(

x

0

)

+

f

(

x

0

)

(

x

x

0

)

+

1

2

!

f

(

x

0

)

(

x

x

0

)

2

+

f(x)=f({{x}_{0}})+{f}'({{x}_{0}})(x-{{x}_{0}})+\frac{1}{2!}{f}''({{x}_{0}}){{(x-{{x}_{0}})}^{2}}+\cdots

f(x)=f(x0​)+f′(x0​)(x−x0​)+2!1​f′′(x0​)(x−x0​)2+⋯

+

f

(

n

)

(

x

0

)

n

!

(

x

x

0

)

n

+

R

n

(

x

)

+\frac{{{f}^{(n)}}({{x}_{0}})}{n!}{{(x-{{x}_{0}})}^{n}}+{{R}_{n}}(x)

+n!f(n)(x0​)​(x−x0​)n+Rn​(x)
其中

R

n

(

x

)

=

f

(

n

+

1

)

(

ξ

)

(

n

+

1

)

!

(

x

x

0

)

n

+

1

{{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{(x-{{x}_{0}})}^{n+1}}

Rn​(x)=(n+1)!f(n+1)(ξ)​(x−x0​)n+1称为

f

(

x

)

f(x)

f(x)在点

x

0

{{x}_{0}}

x0​处的

n

n

n阶泰勒余项。

x

0

=

0

{{x}_{0}}=0

x0​=0,则

n

n

n阶泰勒公式

f

(

x

)

=

f

(

0

)

+

f

(

0

)

x

+

1

2

!

f

(

0

)

x

2

+

+

f

(

n

)

(

0

)

n

!

x

n

+

R

n

(

x

)

f(x)=f(0)+{f}'(0)x+\frac{1}{2!}{f}''(0){{x}^{2}}+\cdots +\frac{{{f}^{(n)}}(0)}{n!}{{x}^{n}}+{{R}_{n}}(x)

f(x)=f(0)+f′(0)x+2!1​f′′(0)x2+⋯+n!f(n)(0)​xn+Rn​(x)……(1)
其中

R

n

(

x

)

=

f

(

n

+

1

)

(

ξ

)

(

n

+

1

)

!

x

n

+

1

{{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{x}^{n+1}}

Rn​(x)=(n+1)!f(n+1)(ξ)​xn+1,$\xi

0

在0与

在0与x$之间.(1)式称为麦克劳林公式

常用五种函数在

x

0

=

0

{{x}_{0}}=0

x0​=0处的泰勒公式

(1)

e

x

=

1

+

x

+

1

2

!

x

2

+

+

1

n

!

x

n

+

x

n

+

1

(

n

+

1

)

!

e

ξ

{{{e}}^{x}}=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+\frac{{{x}^{n+1}}}{(n+1)!}{{e}^{\xi }}

ex=1+x+2!1​x2+⋯+n!1​xn+(n+1)!xn+1​eξ

=

1

+

x

+

1

2

!

x

2

+

+

1

n

!

x

n

+

o

(

x

n

)

=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+o({{x}^{n}})

=1+x+2!1​x2+⋯+n!1​xn+o(xn)

(2)

sin

x

=

x

1

3

!

x

3

+

+

x

n

n

!

sin

n

π

2

+

x

n

+

1

(

n

+

1

)

!

sin

(

ξ

+

n

+

1

2

π

)

\sin x=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\sin (\xi +\frac{n+1}{2}\pi )

sinx=x−3!1​x3+⋯+n!xn​sin2nπ​+(n+1)!xn+1​sin(ξ+2n+1​π)

=

x

1

3

!

x

3

+

+

x

n

n

!

sin

n

π

2

+

o

(

x

n

)

=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+o({{x}^{n}})

=x−3!1​x3+⋯+n!xn​sin2nπ​+o(xn)

(3)

cos

x

=

1

1

2

!

x

2

+

+

x

n

n

!

cos

n

π

2

+

x

n

+

1

(

n

+

1

)

!

cos

(

ξ

+

n

+

1

2

π

)

\cos x=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\cos (\xi +\frac{n+1}{2}\pi )

cosx=1−2!1​x2+⋯+n!xn​cos2nπ​+(n+1)!xn+1​cos(ξ+2n+1​π)

=

1

1

2

!

x

2

+

+

x

n

n

!

cos

n

π

2

+

o

(

x

n

)

=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+o({{x}^{n}})

=1−2!1​x2+⋯+n!xn​cos2nπ​+o(xn)

(4)

ln

(

1

+

x

)

=

x

1

2

x

2

+

1

3

x

3

+

(

1

)

n

1

x

n

n

+

(

1

)

n

x

n

+

1

(

n

+

1

)

(

1

+

ξ

)

n

+

1

\ln (1+x)=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+\frac{{{(-1)}^{n}}{{x}^{n+1}}}{(n+1){{(1+\xi )}^{n+1}}}

ln(1+x)=x−21​x2+31​x3−⋯+(−1)n−1nxn​+(n+1)(1+ξ)n+1(−1)nxn+1​

=

x

1

2

x

2

+

1

3

x

3

+

(

1

)

n

1

x

n

n

+

o

(

x

n

)

=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+o({{x}^{n}})

=x−21​x2+31​x3−⋯+(−1)n−1nxn​+o(xn)

(5)

(

1

+

x

)

m

=

1

+

m

x

+

m

(

m

1

)

2

!

x

2

+

+

m

(

m

1

)

(

m

n

+

1

)

n

!

x

n

{{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots +\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}}

(1+x)m=1+mx+2!m(m−1)​x2+⋯+n!m(m−1)⋯(m−n+1)​xn

+

m

(

m

1

)

(

m

n

+

1

)

(

n

+

1

)

!

x

n

+

1

(

1

+

ξ

)

m

n

1

+\frac{m(m-1)\cdots (m-n+1)}{(n+1)!}{{x}^{n+1}}{{(1+\xi )}^{m-n-1}}

+(n+1)!m(m−1)⋯(m−n+1)​xn+1(1+ξ)m−n−1

(

1

+

x

)

m

=

1

+

m

x

+

m

(

m

1

)

2

!

x

2

+

{{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots

(1+x)m=1+mx+2!m(m−1)​x2+⋯ ,

+

m

(

m

1

)

(

m

n

+

1

)

n

!

x

n

+

o

(

x

n

)

+\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}}+o({{x}^{n}})

+n!m(m−1)⋯(m−n+1)​xn+o(xn)

12.函数单调性的判断
Th1: 设函数

f

(

x

)

f(x)

f(x)在

(

a

,

b

)

(a,b)

(a,b)区间内可导,如果对

x

(

a

,

b

)

\forall x\in (a,b)

∀x∈(a,b),都有

f

(

x

)

>

0

f\,'(x)>0

f′(x)>0(或

f

(

x

)

<

0

f\,'(x)<0

f′(x)<0),则函数

f

(

x

)

f(x)

f(x)在

(

a

,

b

)

(a,b)

(a,b)内是单调增加的(或单调减少)

Th2: (取极值的必要条件)设函数

f

(

x

)

f(x)

f(x)在

x

0

{{x}_{0}}

x0​处可导,且在

x

0

{{x}_{0}}

x0​处取极值,则

f

(

x

0

)

=

0

f\,'({{x}_{0}})=0

f′(x0​)=0。

Th3: (取极值的第一充分条件)设函数

f

(

x

)

f(x)

f(x)在

x

0

{{x}_{0}}

x0​的某一邻域内可微,且

f

(

x

0

)

=

0

f\,'({{x}_{0}})=0

f′(x0​)=0(或

f

(

x

)

f(x)

f(x)在

x

0

{{x}_{0}}

x0​处连续,但

f

(

x

0

)

f\,'({{x}_{0}})

f′(x0​)不存在。)
(1)若当

x

x

x经过

x

0

{{x}_{0}}

x0​时,

f

(

x

)

f\,'(x)

f′(x)由“+”变“-”,则

f

(

x

0

)

f({{x}_{0}})

f(x0​)为极大值;
(2)若当

x

x

x经过

x

0

{{x}_{0}}

x0​时,

f

(

x

)

f\,'(x)

f′(x)由“-”变“+”,则

f

(

x

0

)

f({{x}_{0}})

f(x0​)为极小值;
(3)若

f

(

x

)

f\,'(x)

f′(x)经过

x

=

x

0

x={{x}_{0}}

x=x0​的两侧不变号,则

f

(

x

0

)

f({{x}_{0}})

f(x0​)不是极值。

Th4: (取极值的第二充分条件)设

f

(

x

)

f(x)

f(x)在点

x

0

{{x}_{0}}

x0​处有

f

(

x

)

0

f''(x)\ne 0

f′′(x)​=0,且

f

(

x

0

)

=

0

f\,'({{x}_{0}})=0

f′(x0​)=0,则 当

f

(

x

0

)

<

0

f'\,'({{x}_{0}})<0

f′′(x0​)<0时,

f

(

x

0

)

f({{x}_{0}})

f(x0​)为极大值;

f

(

x

0

)

>

0

f'\,'({{x}_{0}})>0

f′′(x0​)>0时,

f

(

x

0

)

f({{x}_{0}})

f(x0​)为极小值。
注:如果

f

(

x

0

)

<

0

f'\,'({{x}_{0}})<0

f′′(x0​)<0,此方法失效。

13.渐近线的求法
(1)水平渐近线 若

lim

x

+

f

(

x

)

=

b

\underset{x\to +\infty }{\mathop{\lim }}\,f(x)=b

x→+∞lim​f(x)=b,或

lim

x

f

(

x

)

=

b

\underset{x\to -\infty }{\mathop{\lim }}\,f(x)=b

x→−∞lim​f(x)=b,则

y

=

b

y=b

y=b称为函数

y

=

f

(

x

)

y=f(x)

y=f(x)的水平渐近线。

(2)铅直渐近线 若

lim

x

x

0

f

(

x

)

=

\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f(x)=\infty

x→x0−​lim​f(x)=∞,或

lim

x

x

0

+

f

(

x

)

=

\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f(x)=\infty

x→x0+​lim​f(x)=∞,则

x

=

x

0

x={{x}_{0}}

x=x0​称为

y

=

f

(

x

)

y=f(x)

y=f(x)的铅直渐近线。

(3)斜渐近线 若

a

=

lim

x

f

(

x

)

x

,

b

=

lim

x

[

f

(

x

)

a

x

]

a=\underset{x\to \infty }{\mathop{\lim }}\,\frac{f(x)}{x},\quad b=\underset{x\to \infty }{\mathop{\lim }}\,[f(x)-ax]

a=x→∞lim​xf(x)​,b=x→∞lim​[f(x)−ax],则

y

=

a

x

+

b

y=ax+b

y=ax+b称为

y

=

f

(

x

)

y=f(x)

y=f(x)的斜渐近线。

14.函数凹凸性的判断
Th1: (凹凸性的判别定理)若在I上

f

(

x

)

<

0

f''(x)<0

f′′(x)<0(或

f

(

x

)

>

0

f''(x)>0

f′′(x)>0),则

f

(

x

)

f(x)

f(x)在I上是凸的(或凹的)。

Th2: (拐点的判别定理1)若在

x

0

{{x}_{0}}

x0​处

f

(

x

)

=

0

f''(x)=0

f′′(x)=0,(或

f

(

x

)

f''(x)

f′′(x)不存在),当

x

x

x变动经过

x

0

{{x}_{0}}

x0​时,

f

(

x

)

f''(x)

f′′(x)变号,则

(

x

0

,

f

(

x

0

)

)

({{x}_{0}},f({{x}_{0}}))

(x0​,f(x0​))为拐点。

Th3: (拐点的判别定理2)设

f

(

x

)

f(x)

f(x)在

x

0

{{x}_{0}}

x0​点的某邻域内有三阶导数,且

f

(

x

)

=

0

f''(x)=0

f′′(x)=0,

f

(

x

)

0

f'''(x)\ne 0

f′′′(x)​=0,则

(

x

0

,

f

(

x

0

)

)

({{x}_{0}},f({{x}_{0}}))

(x0​,f(x0​))为拐点。

15.弧微分

d

S

=

1

+

y

2

d

x

dS=\sqrt{1+y{{'}^{2}}}dx

dS=1+y′2

​dx

16.曲率

曲线

y

=

f

(

x

)

y=f(x)

y=f(x)在点

(

x

,

y

)

(x,y)

(x,y)处的曲率

k

=

y

(

1

+

y

2

)

3

2

k=\frac{\left| y'' \right|}{{{(1+y{{'}^{2}})}^{\tfrac{3}{2}}}}

k=(1+y′2)23​∣y′′∣​。
对于参数方程 KaTeX parse error: No such environment: align at position 14: \left\{\begin{̲a̲l̲i̲g̲n̲}̲&x=\varphi(t)\\…

k

=

φ

(

t

)

ψ

(

t

)

φ

(

t

)

ψ

(

t

)

[

φ

2

(

t

)

+

ψ

2

(

t

)

]

3

2

k=\frac{\left| \varphi '(t)\psi ''(t)-\varphi ''(t)\psi '(t) \right|}{{{[\varphi {{'}^{2}}(t)+\psi {{'}^{2}}(t)]}^{\tfrac{3}{2}}}}

k=[φ′2(t)+ψ′2(t)]23​∣φ′(t)ψ′′(t)−φ′′(t)ψ′(t)∣​ 。

17.曲率半径

曲线在点

M

M

M处的曲率

k

(

k

0

)

k(k\ne 0)

k(k​=0)与曲线在点

M

M

M处的曲率半径

ρ

\rho

ρ有如下关系:

ρ

=

1

k

\rho =\frac{1}{k}

ρ=k1​。

线性代数

行列式

1.行列式按行(列)展开定理

(1) 设

A

=

(

a

i

j

)

n

×

n

A = ( a_{{ij}} )_{n \times n}

A=(aij​)n×n​,则:

a

i

1

A

j

1

+

a

i

2

A

j

2

+

+

a

i

n

A

j

n

=

{

A

,

i

=

j

0

,

i

j

a_{i1}A_{j1} +a_{i2}A_{j2} + \cdots + a_{{in}}A_{{jn}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases}

ai1​Aj1​+ai2​Aj2​+⋯+ain​Ajn​={∣A∣,i=j0,i​=j​

a

1

i

A

1

j

+

a

2

i

A

2

j

+

+

a

n

i

A

n

j

=

{

A

,

i

=

j

0

,

i

j

a_{1i}A_{1j} + a_{2i}A_{2j} + \cdots + a_{{ni}}A_{{nj}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases}

a1i​A1j​+a2i​A2j​+⋯+ani​Anj​={∣A∣,i=j0,i​=j​即

A

A

=

A

A

=

A

E

,

AA^{*} = A^{*}A = \left| A \right|E,

AA∗=A∗A=∣A∣E,其中:

A

=

(

A

11

A

12

A

1

n

A

21

A

22

A

2

n

A

n

1

A

n

2

A

n

n

)

=

(

A

j

i

)

=

(

A

i

j

)

T

A^{*} = \begin{pmatrix} A_{11} & A_{12} & \ldots & A_{1n} \\ A_{21} & A_{22} & \ldots & A_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ A_{n1} & A_{n2} & \ldots & A_{{nn}} \\ \end{pmatrix} = (A_{{ji}}) = {(A_{{ij}})}^{T}

A∗=⎝⎜⎜⎛​A11​A21​…An1​​A12​A22​…An2​​…………​A1n​A2n​…Ann​​⎠⎟⎟⎞​=(Aji​)=(Aij​)T

D

n

=

1

1

1

x

1

x

2

x

n

x

1

n

1

x

2

n

1

x

n

n

1

=

1

j

<

i

n

(

x

i

x

j

)

D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n - 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j})

Dn​=∣∣∣∣∣∣∣∣​1x1​…x1n−1​​1x2​…x2n−1​​…………​1xn​…xnn−1​​∣∣∣∣∣∣∣∣​=∏1≤j<i≤n​(xi​−xj​)

(2) 设

A

,

B

A,B

A,B为

n

n

n阶方阵,则

A

B

=

A

B

=

B

A

=

B

A

\left| {AB} \right| = \left| A \right|\left| B \right| = \left| B \right|\left| A \right| = \left| {BA} \right|

∣AB∣=∣A∣∣B∣=∣B∣∣A∣=∣BA∣,但

A

±

B

=

A

±

B

\left| A \pm B \right| = \left| A \right| \pm \left| B \right|

∣A±B∣=∣A∣±∣B∣不一定成立。

(3)

k

A

=

k

n

A

\left| {kA} \right| = k^{n}\left| A \right|

∣kA∣=kn∣A∣,

A

A

A为

n

n

n阶方阵。

(4) 设

A

A

A为

n

n

n阶方阵,

A

T

=

A

;

A

1

=

A

1

|A^{T}| = |A|;|A^{- 1}| = |A|^{- 1}

∣AT∣=∣A∣;∣A−1∣=∣A∣−1(若

A

A

A可逆),

A

=

A

n

1

|A^{*}| = |A|^{n - 1}

∣A∗∣=∣A∣n−1

n

2

n \geq 2

n≥2

(5)

A

O

O

B

=

A

C

O

B

=

A

O

C

B

=

A

B

\left| \begin{matrix} & {A\quad O} \\ & {O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix} & {A\quad C} \\ & {O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix} & {A\quad O} \\ & {C\quad B} \\ \end{matrix} \right| =| A||B|

∣∣∣∣​​AOOB​∣∣∣∣​=∣∣∣∣​​ACOB​∣∣∣∣​=∣∣∣∣​​AOCB​∣∣∣∣​=∣A∣∣B∣

A

,

B

A,B

A,B为方阵,但

O

A

m

×

m

B

n

×

n

O

=

(

1

)

m

n

A

B

\left| \begin{matrix} {O} & A_{m \times m} \\ B_{n \times n} & { O} \\ \end{matrix} \right| = ({- 1)}^{{mn}}|A||B|

∣∣∣∣​OBn×n​​Am×m​O​∣∣∣∣​=(−1)mn∣A∣∣B∣ 。

(6) 范德蒙行列式

D

n

=

1

1

1

x

1

x

2

x

n

x

1

n

1

x

2

n

1

x

n

n

1

=

1

j

<

i

n

(

x

i

x

j

)

D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j})

Dn​=∣∣∣∣∣∣∣∣​1x1​…x1n−1​​1x2​…x2n1​​…………​1xn​…xnn−1​​∣∣∣∣∣∣∣∣​=∏1≤j<i≤n​(xi​−xj​)

A

A

A是

n

n

n阶方阵,

λ

i

(

i

=

1

,

2


,

n

)

\lambda_{i}(i = 1,2\cdots,n)

λi​(i=1,2⋯,n)是

A

A

A的

n

n

n个特征值,则

A

=

i

=

1

n

λ

i

|A| = \prod_{i = 1}^{n}\lambda_{i}

∣A∣=∏i=1n​λi​

矩阵

矩阵:

m

×

n

m \times n

m×n个数

a

i

j

a_{{ij}}

aij​排成

m

m

m行

n

n

n列的表格

[

a

11

a

12

a

1

n

a

21

a

22

a

2

n

a

m

1

a

m

2

a

m

n

]

\begin{bmatrix} a_{11}\quad a_{12}\quad\cdots\quad a_{1n} \\ a_{21}\quad a_{22}\quad\cdots\quad a_{2n} \\ \quad\cdots\cdots\cdots\cdots\cdots \\ a_{m1}\quad a_{m2}\quad\cdots\quad a_{{mn}} \\ \end{bmatrix}

⎣⎢⎢⎡​a11​a12​⋯a1n​a21​a22​⋯a2n​⋯⋯⋯⋯⋯am1​am2​⋯amn​​⎦⎥⎥⎤​ 称为矩阵,简记为

A

A

A,或者

(

a

i

j

)

m

×

n

\left( a_{{ij}} \right)_{m \times n}

(aij​)m×n​ 。若

m

=

n

m = n

m=n,则称

A

A

A是

n

n

n阶矩阵或

n

n

n阶方阵。

矩阵的线性运算

1.矩阵的加法

A

=

(

a

i

j

)

,

B

=

(

b

i

j

)

A = (a_{{ij}}),B = (b_{{ij}})

A=(aij​),B=(bij​)是两个

m

×

n

m \times n

m×n矩阵,则

m

×

n

m \times n

m×n 矩阵

C

=

c

i

j

)

=

a

i

j

+

b

i

j

C = c_{{ij}}) = a_{{ij}} + b_{{ij}}

C=cij​)=aij​+bij​称为矩阵

A

A

A与

B

B

B的和,记为

A

+

B

=

C

A + B = C

A+B=C 。

2.矩阵的数乘

A

=

(

a

i

j

)

A = (a_{{ij}})

A=(aij​)是

m

×

n

m \times n

m×n矩阵,

k

k

k是一个常数,则

m

×

n

m \times n

m×n矩阵

(

k

a

i

j

)

(ka_{{ij}})

(kaij​)称为数

k

k

k与矩阵

A

A

A的数乘,记为

k

A

{kA}

kA。

3.矩阵的乘法

A

=

(

a

i

j

)

A = (a_{{ij}})

A=(aij​)是

m

×

n

m \times n

m×n矩阵,

B

=

(

b

i

j

)

B = (b_{{ij}})

B=(bij​)是

n

×

s

n \times s

n×s矩阵,那么

m

×

s

m \times s

m×s矩阵

C

=

(

c

i

j

)

C = (c_{{ij}})

C=(cij​),其中

c

i

j

=

a

i

1

b

1

j

+

a

i

2

b

2

j

+

+

a

i

n

b

n

j

=

k

=

1

n

a

i

k

b

k

j

c_{{ij}} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{{in}}b_{{nj}} = \sum_{k =1}^{n}{a_{{ik}}b_{{kj}}}

cij​=ai1​b1j​+ai2​b2j​+⋯+ain​bnj​=∑k=1n​aik​bkj​称为

A

B

{AB}

AB的乘积,记为

C

=

A

B

C = AB

C=AB 。

4.

A

T

\mathbf{A}^{\mathbf{T}}

AT

A

1

\mathbf{A}^{\mathbf{-1}}

A−1

A

\mathbf{A}^{\mathbf{*}}

A∗三者之间的关系

(1)

(

A

T

)

T

=

A

,

(

A

B

)

T

=

B

T

A

T

,

(

k

A

)

T

=

k

A

T

,

(

A

±

B

)

T

=

A

T

±

B

T

{(A^{T})}^{T} = A,{(AB)}^{T} = B^{T}A^{T},{(kA)}^{T} = kA^{T},{(A \pm B)}^{T} = A^{T} \pm B^{T}

(AT)T=A,(AB)T=BTAT,(kA)T=kAT,(A±B)T=AT±BT

(2)

(

A

1

)

1

=

A

,

(

A

B

)

1

=

B

1

A

1

,

(

k

A

)

1

=

1

k

A

1

,

\left( A^{- 1} \right)^{- 1} = A,\left( {AB} \right)^{- 1} = B^{- 1}A^{- 1},\left( {kA} \right)^{- 1} = \frac{1}{k}A^{- 1},

(A−1)−1=A,(AB)−1=B−1A−1,(kA)−1=k1​A−1,

(

A

±

B

)

1

=

A

1

±

B

1

{(A \pm B)}^{- 1} = A^{- 1} \pm B^{- 1}

(A±B)−1=A−1±B−1不一定成立。

(3)

(

A

)

=

A

n

2

A

(

n

3

)

\left( A^{*} \right)^{*} = |A|^{n - 2}\ A\ \ (n \geq 3)

(A∗)∗=∣A∣n−2 A  (n≥3),

(

A

B

)

=

B

A

,

\left({AB} \right)^{*} = B^{*}A^{*},

(AB)∗=B∗A∗,

(

k

A

)

=

k

n

1

A

(

n

2

)

\left( {kA} \right)^{*} = k^{n -1}A^{*}{\ \ }\left( n \geq 2 \right)

(kA)∗=kn−1A∗  (n≥2)

(

A

±

B

)

=

A

±

B

\left( A \pm B \right)^{*} = A^{*} \pm B^{*}

(A±B)∗=A∗±B∗不一定成立。

(4)

(

A

1

)

T

=

(

A

T

)

1

,

(

A

1

)

=

(

A

A

)

1

,

(

A

)

T

=

(

A

T

)

{(A^{- 1})}^{T} = {(A^{T})}^{- 1},\ \left( A^{- 1} \right)^{*} ={(AA^{*})}^{- 1},{(A^{*})}^{T} = \left( A^{T} \right)^{*}

(A−1)T=(AT)−1, (A−1)∗=(AA∗)−1,(A∗)T=(AT)∗

5.有关

A

\mathbf{A}^{\mathbf{*}}

A∗的结论

(1)

A

A

=

A

A

=

A

E

AA^{*} = A^{*}A = |A|E

AA∗=A∗A=∣A∣E

(2)

A

=

A

n

1

(

n

2

)

,

(

k

A

)

=

k

n

1

A

,

(

A

)

=

A

n

2

A

(

n

3

)

|A^{*}| = |A|^{n - 1}\ (n \geq 2),\ \ \ \ {(kA)}^{*} = k^{n -1}A^{*},{{\ \ }\left( A^{*} \right)}^{*} = |A|^{n - 2}A(n \geq 3)

∣A∗∣=∣A∣n−1 (n≥2),    (kA)∗=kn−1A∗,  (A∗)∗=∣A∣n−2A(n≥3)

(3) 若

A

A

A可逆,则

A

=

A

A

1

,

(

A

)

=

1

A

A

A^{*} = |A|A^{- 1},{(A^{*})}^{*} = \frac{1}{|A|}A

A∗=∣A∣A−1,(A∗)∗=∣A∣1​A

(4) 若

A

A

A为

n

n

n阶方阵,则:

r

(

A

)

=

{

n

,

r

(

A

)

=

n

1

,

r

(

A

)

=

n

1

0

,

r

(

A

)

<

n

1

r(A^*)=\begin{cases}n,\quad r(A)=n\\ 1,\quad r(A)=n-1\\ 0,\quad r(A)<n-1\end{cases}

r(A∗)=⎩⎪⎨⎪⎧​n,r(A)=n1,r(A)=n−10,r(A)<n−1​

6.有关

A

1

\mathbf{A}^{\mathbf{- 1}}

A−1的结论

A

A

A可逆

A

B

=

E

;

A

0

;

r

(

A

)

=

n

;

\Leftrightarrow AB = E; \Leftrightarrow |A| \neq 0; \Leftrightarrow r(A) = n;

⇔AB=E;⇔∣A∣​=0;⇔r(A)=n;

A

\Leftrightarrow A

⇔A可以表示为初等矩阵的乘积;

A

;

A

x

=

0

\Leftrightarrow A;\Leftrightarrow Ax = 0

⇔A;⇔Ax=0。

7.有关矩阵秩的结论

(1) 秩

r

(

A

)

r(A)

r(A)=行秩=列秩;

(2)

r

(

A

m

×

n

)

min

(

m

,

n

)

;

r(A_{m \times n}) \leq \min(m,n);

r(Am×n​)≤min(m,n);

(3)

A

0

r

(

A

)

1

A \neq 0 \Rightarrow r(A) \geq 1

A​=0⇒r(A)≥1;

(4)

r

(

A

±

B

)

r

(

A

)

+

r

(

B

)

;

r(A \pm B) \leq r(A) + r(B);

r(A±B)≤r(A)+r(B);

(5) 初等变换不改变矩阵的秩

(6)

r

(

A

)

+

r

(

B

)

n

r

(

A

B

)

min

(

r

(

A

)

,

r

(

B

)

)

,

r(A) + r(B) - n \leq r(AB) \leq \min(r(A),r(B)),

r(A)+r(B)−n≤r(AB)≤min(r(A),r(B)),特别若

A

B

=

O

AB = O

AB=O
则:

r

(

A

)

+

r

(

B

)

n

r(A) + r(B) \leq n

r(A)+r(B)≤n

(7) 若

A

1

A^{- 1}

A−1存在

r

(

A

B

)

=

r

(

B

)

;

\Rightarrow r(AB) = r(B);

⇒r(AB)=r(B); 若

B

1

B^{- 1}

B−1存在

r

(

A

B

)

=

r

(

A

)

;

\Rightarrow r(AB) = r(A);

⇒r(AB)=r(A);

r

(

A

m

×

n

)

=

n

r

(

A

B

)

=

r

(

B

)

;

r(A_{m \times n}) = n \Rightarrow r(AB) = r(B);

r(Am×n​)=n⇒r(AB)=r(B); 若

r

(

A

m

×

s

)

=

n

r

(

A

B

)

=

r

(

A

)

r(A_{m \times s}) = n\Rightarrow r(AB) = r\left( A \right)

r(Am×s​)=n⇒r(AB)=r(A)。

(8)

r

(

A

m

×

s

)

=

n

A

x

=

0

r(A_{m \times s}) = n \Leftrightarrow Ax = 0

r(Am×s​)=n⇔Ax=0只有零解

8.分块求逆公式

(

A

O

O

B

)

1

=

(

A

1

O

O

B

1

)

\begin{pmatrix} A & O \\ O & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{-1} & O \\ O & B^{- 1} \\ \end{pmatrix}

(AO​OB​)−1=(A−1O​OB−1​);

(

A

C

O

B

)

1

=

(

A

1

A

1

C

B

1

O

B

1

)

\begin{pmatrix} A & C \\ O & B \\\end{pmatrix}^{- 1} = \begin{pmatrix} A^{- 1}& - A^{- 1}CB^{- 1} \\ O & B^{- 1} \\ \end{pmatrix}

(AO​CB​)−1=(A−1O​−A−1CB−1B−1​);

(

A

O

C

B

)

1

=

(

A

1

O

B

1

C

A

1

B

1

)

\begin{pmatrix} A & O \\ C & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{- 1}&{O} \\ - B^{- 1}CA^{- 1} & B^{- 1} \\\end{pmatrix}

(AC​OB​)−1=(A−1−B−1CA−1​OB−1​);

(

O

A

B

O

)

1

=

(

O

B

1

A

1

O

)

\begin{pmatrix} O & A \\ B & O \\ \end{pmatrix}^{- 1} =\begin{pmatrix} O & B^{- 1} \\ A^{- 1} & O \\ \end{pmatrix}

(OB​AO​)−1=(OA−1​B−1O​)

这里

A

A

A,

B

B

B均为可逆方阵。

向量

1.有关向量组的线性表示

(1)

α

1

,

α

2

,


,

α

s

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

α1​,α2​,⋯,αs​线性相关

\Leftrightarrow

⇔至少有一个向量可以用其余向量线性表示。

(2)

α

1

,

α

2

,


,

α

s

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

α1​,α2​,⋯,αs​线性无关,

α

1

,

α

2

,


,

α

s

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

α1​,α2​,⋯,αs​,

β

\beta

β线性相关

β

\Leftrightarrow \beta

⇔β可以由

α

1

,

α

2

,


,

α

s

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

α1​,α2​,⋯,αs​唯一线性表示。

(3)

β

\beta

β可以由

α

1

,

α

2

,


,

α

s

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

α1​,α2​,⋯,αs​线性表示

r

(

α

1

,

α

2

,


,

α

s

)

=

r

(

α

1

,

α

2

,


,

α

s

,

β

)

\Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) =r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta)

⇔r(α1​,α2​,⋯,αs​)=r(α1​,α2​,⋯,αs​,β) 。

2.有关向量组的线性相关性

(1)部分相关,整体相关;整体无关,部分无关.

(2) ①

n

n

n个

n

n

n维向量

α

1

,

α

2

α

n

\alpha_{1},\alpha_{2}\cdots\alpha_{n}

α1​,α2​⋯αn​线性无关

[

α

1

α

2

α

n

]

0

\Leftrightarrow \left|\left\lbrack \alpha_{1}\alpha_{2}\cdots\alpha_{n} \right\rbrack \right| \neq0

⇔∣[α1​α2​⋯αn​]∣​=0,

n

n

n个

n

n

n维向量

α

1

,

α

2

α

n

\alpha_{1},\alpha_{2}\cdots\alpha_{n}

α1​,α2​⋯αn​线性相关

[

α

1

,

α

2

,


,

α

n

]

=

0

\Leftrightarrow |\lbrack\alpha_{1},\alpha_{2},\cdots,\alpha_{n}\rbrack| = 0

⇔∣[α1​,α2​,⋯,αn​]∣=0

n

+

1

n + 1

n+1个

n

n

n维向量线性相关。

③ 若

α

1

,

α

2

α

S

\alpha_{1},\alpha_{2}\cdots\alpha_{S}

α1​,α2​⋯αS​线性无关,则添加分量后仍线性无关;或一组向量线性相关,去掉某些分量后仍线性相关。

3.有关向量组的线性表示

(1)

α

1

,

α

2

,


,

α

s

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

α1​,α2​,⋯,αs​线性相关

\Leftrightarrow

⇔至少有一个向量可以用其余向量线性表示。

(2)

α

1

,

α

2

,


,

α

s

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

α1​,α2​,⋯,αs​线性无关,

α

1

,

α

2

,


,

α

s

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

α1​,α2​,⋯,αs​,

β

\beta

β线性相关

β

\Leftrightarrow\beta

⇔β 可以由

α

1

,

α

2

,


,

α

s

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

α1​,α2​,⋯,αs​唯一线性表示。

(3)

β

\beta

β可以由

α

1

,

α

2

,


,

α

s

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

α1​,α2​,⋯,αs​线性表示

r

(

α

1

,

α

2

,


,

α

s

)

=

r

(

α

1

,

α

2

,


,

α

s

,

β

)

\Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) =r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta)

⇔r(α1​,α2​,⋯,αs​)=r(α1​,α2​,⋯,αs​,β)

4.向量组的秩与矩阵的秩之间的关系

r

(

A

m

×

n

)

=

r

r(A_{m \times n}) =r

r(Am×n​)=r,则

A

A

A的秩

r

(

A

)

r(A)

r(A)与

A

A

A的行列向量组的线性相关性关系为:

(1) 若

r

(

A

m

×

n

)

=

r

=

m

r(A_{m \times n}) = r = m

r(Am×n​)=r=m,则

A

A

A的行向量组线性无关。

(2) 若

r

(

A

m

×

n

)

=

r

<

m

r(A_{m \times n}) = r < m

r(Am×n​)=r<m,则

A

A

A的行向量组线性相关。

(3) 若

r

(

A

m

×

n

)

=

r

=

n

r(A_{m \times n}) = r = n

r(Am×n​)=r=n,则

A

A

A的列向量组线性无关。

(4) 若

r

(

A

m

×

n

)

=

r

<

n

r(A_{m \times n}) = r < n

r(Am×n​)=r<n,则

A

A

A的列向量组线性相关。

5.

n

\mathbf{n}

n维向量空间的基变换公式及过渡矩阵

α

1

,

α

2

,


,

α

n

\alpha_{1},\alpha_{2},\cdots,\alpha_{n}

α1​,α2​,⋯,αn​与

β

1

,

β

2

,


,

β

n

\beta_{1},\beta_{2},\cdots,\beta_{n}

β1​,β2​,⋯,βn​是向量空间

V

V

V的两组基,则基变换公式为:

(

β

1

,

β

2

,


,

β

n

)

=

(

α

1

,

α

2

,


,

α

n

)

[

c

11

c

12

c

1

n

c

21

c

22

c

2

n

c

n

1

c

n

2

c

n

n

]

=

(

α

1

,

α

2

,


,

α

n

)

C

(\beta_{1},\beta_{2},\cdots,\beta_{n}) = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})\begin{bmatrix} c_{11}& c_{12}& \cdots & c_{1n} \\ c_{21}& c_{22}&\cdots & c_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ c_{n1}& c_{n2} & \cdots & c_{{nn}} \\\end{bmatrix} = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})C

(β1​,β2​,⋯,βn​)=(α1​,α2​,⋯,αn​)⎣⎢⎢⎡​c11​c21​⋯cn1​​c12​c22​⋯cn2​​⋯⋯⋯⋯​c1n​c2n​⋯cnn​​⎦⎥⎥⎤​=(α1​,α2​,⋯,αn​)C

其中

C

C

C是可逆矩阵,称为由基

α

1

,

α

2

,


,

α

n

\alpha_{1},\alpha_{2},\cdots,\alpha_{n}

α1​,α2​,⋯,αn​到基

β

1

,

β

2

,


,

β

n

\beta_{1},\beta_{2},\cdots,\beta_{n}

β1​,β2​,⋯,βn​的过渡矩阵。

6.坐标变换公式

若向量

γ

\gamma

γ在基

α

1

,

α

2

,


,

α

n

\alpha_{1},\alpha_{2},\cdots,\alpha_{n}

α1​,α2​,⋯,αn​与基

β

1

,

β

2

,


,

β

n

\beta_{1},\beta_{2},\cdots,\beta_{n}

β1​,β2​,⋯,βn​的坐标分别是

X

=

(

x

1

,

x

2

,


,

x

n

)

T

X = {(x_{1},x_{2},\cdots,x_{n})}^{T}

X=(x1​,x2​,⋯,xn​)T,

Y

=

(

y

1

,

y

2

,


,

y

n

)

T

Y = \left( y_{1},y_{2},\cdots,y_{n} \right)^{T}

Y=(y1​,y2​,⋯,yn​)T 即:

γ

=

x

1

α

1

+

x

2

α

2

+

+

x

n

α

n

=

y

1

β

1

+

y

2

β

2

+

+

y

n

β

n

\gamma =x_{1}\alpha_{1} + x_{2}\alpha_{2} + \cdots + x_{n}\alpha_{n} = y_{1}\beta_{1} +y_{2}\beta_{2} + \cdots + y_{n}\beta_{n}

γ=x1​α1​+x2​α2​+⋯+xn​αn​=y1​β1​+y2​β2​+⋯+yn​βn​,则向量坐标变换公式为

X

=

C

Y

X = CY

X=CY 或

Y

=

C

1

X

Y = C^{- 1}X

Y=C−1X,其中

C

C

C是从基

α

1

,

α

2

,


,

α

n

\alpha_{1},\alpha_{2},\cdots,\alpha_{n}

α1​,α2​,⋯,αn​到基

β

1

,

β

2

,


,

β

n

\beta_{1},\beta_{2},\cdots,\beta_{n}

β1​,β2​,⋯,βn​的过渡矩阵。

7.向量的内积

(

α

,

β

)

=

a

1

b

1

+

a

2

b

2

+

+

a

n

b

n

=

α

T

β

=

β

T

α

(\alpha,\beta) = a_{1}b_{1} + a_{2}b_{2} + \cdots + a_{n}b_{n} = \alpha^{T}\beta = \beta^{T}\alpha

(α,β)=a1​b1​+a2​b2​+⋯+an​bn​=αTβ=βTα

8.Schmidt正交化

α

1

,

α

2

,


,

α

s

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

α1​,α2​,⋯,αs​线性无关,则可构造

β

1

,

β

2

,


,

β

s

\beta_{1},\beta_{2},\cdots,\beta_{s}

β1​,β2​,⋯,βs​使其两两正交,且

β

i

\beta_{i}

βi​仅是

α

1

,

α

2

,


,

α

i

\alpha_{1},\alpha_{2},\cdots,\alpha_{i}

α1​,α2​,⋯,αi​的线性组合

(

i

=

1

,

2

,


,

n

)

(i= 1,2,\cdots,n)

(i=1,2,⋯,n),再把

β

i

\beta_{i}

βi​单位化,记

γ

i

=

β

i

β

i

\gamma_{i} =\frac{\beta_{i}}{\left| \beta_{i}\right|}

γi​=∣βi​∣βi​​,则

γ

1

,

γ

2

,


,

γ

i

\gamma_{1},\gamma_{2},\cdots,\gamma_{i}

γ1​,γ2​,⋯,γi​是规范正交向量组。其中

β

1

=

α

1

\beta_{1} = \alpha_{1}

β1​=α1​,

β

2

=

α

2

(

α

2

,

β

1

)

(

β

1

,

β

1

)

β

1

\beta_{2} = \alpha_{2} -\frac{(\alpha_{2},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1}

β2​=α2​−(β1​,β1​)(α2​,β1​)​β1​ ,

β

3

=

α

3

(

α

3

,

β

1

)

(

β

1

,

β

1

)

β

1

(

α

3

,

β

2

)

(

β

2

,

β

2

)

β

2

\beta_{3} =\alpha_{3} - \frac{(\alpha_{3},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} -\frac{(\alpha_{3},\beta_{2})}{(\beta_{2},\beta_{2})}\beta_{2}

β3​=α3​−(β1​,β1​)(α3​,β1​)​β1​−(β2​,β2​)(α3​,β2​)​β2​ ,

β

s

=

α

s

(

α

s

,

β

1

)

(

β

1

,

β

1

)

β

1

(

α

s

,

β

2

)

(

β

2

,

β

2

)

β

2

(

α

s

,

β

s

1

)

(

β

s

1

,

β

s

1

)

β

s

1

\beta_{s} = \alpha_{s} - \frac{(\alpha_{s},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} - \frac{(\alpha_{s},\beta_{2})}{(\beta_{2},\beta_{2})}\beta_{2} - \cdots - \frac{(\alpha_{s},\beta_{s - 1})}{(\beta_{s - 1},\beta_{s - 1})}\beta_{s - 1}

βs​=αs​−(β1​,β1​)(αs​,β1​)​β1​−(β2​,β2​)(αs​,β2​)​β2​−⋯−(βs−1​,βs−1​)(αs​,βs−1​)​βs−1​

9.正交基及规范正交基

向量空间一组基中的向量如果两两正交,就称为正交基;若正交基中每个向量都是单位向量,就称其为规范正交基。

线性方程组

1.克莱姆法则

线性方程组

{

a

11

x

1

+

a

12

x

2

+

+

a

1

n

x

n

=

b

1

a

21

x

1

+

a

22

x

2

+

+

a

2

n

x

n

=

b

2

a

n

1

x

1

+

a

n

2

x

2

+

+

a

n

n

x

n

=

b

n

\begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots +a_{1n}x_{n} = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} =b_{2} \\ \quad\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{{nn}}x_{n} = b_{n} \\ \end{cases}

⎩⎪⎪⎪⎨⎪⎪⎪⎧​a11​x1​+a12​x2​+⋯+a1n​xn​=b1​a21​x1​+a22​x2​+⋯+a2n​xn​=b2​⋯⋯⋯⋯⋯⋯⋯⋯⋯an1​x1​+an2​x2​+⋯+ann​xn​=bn​​,如果系数行列式

D

=

A

0

D = \left| A \right| \neq 0

D=∣A∣​=0,则方程组有唯一解,

x

1

=

D

1

D

,

x

2

=

D

2

D

,


,

x

n

=

D

n

D

x_{1} = \frac{D_{1}}{D},x_{2} = \frac{D_{2}}{D},\cdots,x_{n} =\frac{D_{n}}{D}

x1​=DD1​​,x2​=DD2​​,⋯,xn​=DDn​​,其中

D

j

D_{j}

Dj​是把

D

D

D中第

j

j

j列元素换成方程组右端的常数列所得的行列式。

2.

n

n

n阶矩阵

A

A

A可逆

A

x

=

0

\Leftrightarrow Ax = 0

⇔Ax=0只有零解。

b

,

A

x

=

b

\Leftrightarrow\forall b,Ax = b

⇔∀b,Ax=b总有唯一解,一般地,

r

(

A

m

×

n

)

=

n

A

x

=

0

r(A_{m \times n}) = n \Leftrightarrow Ax= 0

r(Am×n​)=n⇔Ax=0只有零解。

3.非奇次线性方程组有解的充分必要条件,线性方程组解的性质和解的结构

(1) 设

A

A

A为

m

×

n

m \times n

m×n矩阵,若

r

(

A

m

×

n

)

=

m

r(A_{m \times n}) = m

r(Am×n​)=m,则对

A

x

=

b

Ax =b

Ax=b而言必有

r

(

A

)

=

r

(

A

b

)

=

m

r(A) = r(A \vdots b) = m

r(A)=r(A⋮b)=m,从而

A

x

=

b

Ax = b

Ax=b有解。

(2) 设

x

1

,

x

2

,

x

s

x_{1},x_{2},\cdots x_{s}

x1​,x2​,⋯xs​为

A

x

=

b

Ax = b

Ax=b的解,则

k

1

x

1

+

k

2

x

2

+

k

s

x

s

k_{1}x_{1} + k_{2}x_{2}\cdots + k_{s}x_{s}

k1​x1​+k2​x2​⋯+ks​xs​当

k

1

+

k

2

+

+

k

s

=

1

k_{1} + k_{2} + \cdots + k_{s} = 1

k1​+k2​+⋯+ks​=1时仍为

A

x

=

b

Ax =b

Ax=b的解;但当

k

1

+

k

2

+

+

k

s

=

0

k_{1} + k_{2} + \cdots + k_{s} = 0

k1​+k2​+⋯+ks​=0时,则为

A

x

=

0

Ax =0

Ax=0的解。特别

x

1

+

x

2

2

\frac{x_{1} + x_{2}}{2}

2x1​+x2​​为

A

x

=

b

Ax = b

Ax=b的解;

2

x

3

(

x

1

+

x

2

)

2x_{3} - (x_{1} +x_{2})

2x3​−(x1​+x2​)为

A

x

=

0

Ax = 0

Ax=0的解。

(3) 非齐次线性方程组

A

x

=

b

{Ax} = b

Ax=b无解

r

(

A

)

+

1

=

r

(

A

)

b

\Leftrightarrow r(A) + 1 =r(\overline{A}) \Leftrightarrow b

⇔r(A)+1=r(A)⇔b不能由

A

A

A的列向量

α

1

,

α

2

,


,

α

n

\alpha_{1},\alpha_{2},\cdots,\alpha_{n}

α1​,α2​,⋯,αn​线性表示。

4.奇次线性方程组的基础解系和通解,解空间,非奇次线性方程组的通解

(1) 齐次方程组

A

x

=

0

{Ax} = 0

Ax=0恒有解(必有零解)。当有非零解时,由于解向量的任意线性组合仍是该齐次方程组的解向量,因此

A

x

=

0

{Ax}= 0

Ax=0的全体解向量构成一个向量空间,称为该方程组的解空间,解空间的维数是

n

r

(

A

)

n - r(A)

n−r(A),解空间的一组基称为齐次方程组的基础解系。

(2)

η

1

,

η

2

,


,

η

t

\eta_{1},\eta_{2},\cdots,\eta_{t}

η1​,η2​,⋯,ηt​是

A

x

=

0

{Ax} = 0

Ax=0的基础解系,即:

  1. η

    1

    ,

    η

    2

    ,


    ,

    η

    t

    \eta_{1},\eta_{2},\cdots,\eta_{t}

    η1​,η2​,⋯,ηt​是

    A

    x

    =

    0

    {Ax} = 0

    Ax=0的解;

  2. η

    1

    ,

    η

    2

    ,


    ,

    η

    t

    \eta_{1},\eta_{2},\cdots,\eta_{t}

    η1​,η2​,⋯,ηt​线性无关;

  3. A

    x

    =

    0

    {Ax} = 0

    Ax=0的任一解都可以由

    η

    1

    ,

    η

    2

    ,


    ,

    η

    t

    \eta_{1},\eta_{2},\cdots,\eta_{t}

    η1​,η2​,⋯,ηt​线性表出.

    k

    1

    η

    1

    +

    k

    2

    η

    2

    +

    +

    k

    t

    η

    t

    k_{1}\eta_{1} + k_{2}\eta_{2} + \cdots + k_{t}\eta_{t}

    k1​η1​+k2​η2​+⋯+kt​ηt​是

    A

    x

    =

    0

    {Ax} = 0

    Ax=0的通解,其中

    k

    1

    ,

    k

    2

    ,


    ,

    k

    t

    k_{1},k_{2},\cdots,k_{t}

    k1​,k2​,⋯,kt​是任意常数。

矩阵的特征值和特征向量

1.矩阵的特征值和特征向量的概念及性质

(1) 设

λ

\lambda

λ是

A

A

A的一个特征值,则

k

A

,

a

A

+

b

E

,

A

2

,

A

m

,

f

(

A

)

,

A

T

,

A

1

,

A

{kA},{aA} + {bE},A^{2},A^{m},f(A),A^{T},A^{- 1},A^{*}

kA,aA+bE,A2,Am,f(A),AT,A−1,A∗有一个特征值分别为

k

λ

,

a

λ

+

b

,

λ

2

,

λ

m

,

f

(

λ

)

,

λ

,

λ

1

,

A

λ

,

{kλ},{aλ} + b,\lambda^{2},\lambda^{m},f(\lambda),\lambda,\lambda^{- 1},\frac{|A|}{\lambda},

kλ,aλ+b,λ2,λm,f(λ),λ,λ−1,λ∣A∣​,且对应特征向量相同(

A

T

A^{T}

AT 例外)。

(2)若

λ

1

,

λ

2

,


,

λ

n

\lambda_{1},\lambda_{2},\cdots,\lambda_{n}

λ1​,λ2​,⋯,λn​为

A

A

A的

n

n

n个特征值,则

i

=

1

n

λ

i

=

i

=

1

n

a

i

i

,

i

=

1

n

λ

i

=

A

\sum_{i= 1}^{n}\lambda_{i} = \sum_{i = 1}^{n}a_{{ii}},\prod_{i = 1}^{n}\lambda_{i}= |A|

∑i=1n​λi​=∑i=1n​aii​,∏i=1n​λi​=∣A∣ ,从而

A

0

A

|A| \neq 0 \Leftrightarrow A

∣A∣​=0⇔A没有特征值。

(3)设

λ

1

,

λ

2

,


,

λ

s

\lambda_{1},\lambda_{2},\cdots,\lambda_{s}

λ1​,λ2​,⋯,λs​为

A

A

A的

s

s

s个特征值,对应特征向量为

α

1

,

α

2

,


,

α

s

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

α1​,α2​,⋯,αs​,

若:

α

=

k

1

α

1

+

k

2

α

2

+

+

k

s

α

s

\alpha = k_{1}\alpha_{1} + k_{2}\alpha_{2} + \cdots + k_{s}\alpha_{s}

α=k1​α1​+k2​α2​+⋯+ks​αs​ ,

则:

A

n

α

=

k

1

A

n

α

1

+

k

2

A

n

α

2

+

+

k

s

A

n

α

s

=

k

1

λ

1

n

α

1

+

k

2

λ

2

n

α

2

+

k

s

λ

s

n

α

s

A^{n}\alpha = k_{1}A^{n}\alpha_{1} + k_{2}A^{n}\alpha_{2} + \cdots +k_{s}A^{n}\alpha_{s} = k_{1}\lambda_{1}^{n}\alpha_{1} +k_{2}\lambda_{2}^{n}\alpha_{2} + \cdots k_{s}\lambda_{s}^{n}\alpha_{s}

Anα=k1​Anα1​+k2​Anα2​+⋯+ks​Anαs​=k1​λ1n​α1​+k2​λ2n​α2​+⋯ks​λsn​αs​ 。

2.相似变换、相似矩阵的概念及性质

(1) 若

A

B

A \sim B

A∼B,则

  1. A

    T

    B

    T

    ,

    A

    1

    B

    1

    ,

    ,

    A

    B

    A^{T} \sim B^{T},A^{- 1} \sim B^{- 1},,A^{*} \sim B^{*}

    AT∼BT,A−1∼B−1,,A∗∼B∗

  2. A

    =

    B

    ,

    i

    =

    1

    n

    A

    i

    i

    =

    i

    =

    1

    n

    b

    i

    i

    ,

    r

    (

    A

    )

    =

    r

    (

    B

    )

    |A| = |B|,\sum_{i = 1}^{n}A_{{ii}} = \sum_{i =1}^{n}b_{{ii}},r(A) = r(B)

    ∣A∣=∣B∣,∑i=1n​Aii​=∑i=1n​bii​,r(A)=r(B)

  3. λ

    E

    A

    =

    λ

    E

    B

    |\lambda E - A| = |\lambda E - B|

    ∣λE−A∣=∣λE−B∣,对

    λ

    \forall\lambda

    ∀λ成立

3.矩阵可相似对角化的充分必要条件

(1)设

A

A

A为

n

n

n阶方阵,则

A

A

A可对角化

\Leftrightarrow

⇔对每个

k

i

k_{i}

ki​重根特征值

λ

i

\lambda_{i}

λi​,有

n

r

(

λ

i

E

A

)

=

k

i

n-r(\lambda_{i}E - A) = k_{i}

n−r(λi​E−A)=ki​

(2) 设

A

A

A可对角化,则由

P

1

A

P

=

Λ

,

P^{- 1}{AP} = \Lambda,

P−1AP=Λ,有

A

=

P

Λ

P

1

A = {PΛ}P^{-1}

A=PΛP−1,从而

A

n

=

P

Λ

n

P

1

A^{n} = P\Lambda^{n}P^{- 1}

An=PΛnP−1

(3) 重要结论

  1. A

    B

    ,

    C

    D

    A \sim B,C \sim D

    A∼B,C∼D,则

    [

    A

    O

    O

    C

    ]

    [

    B

    O

    O

    D

    ]

    \begin{bmatrix} A & O \\ O & C \\\end{bmatrix} \sim \begin{bmatrix} B & O \\ O & D \\\end{bmatrix}

    [AO​OC​]∼[BO​OD​].

  2. A

    B

    A \sim B

    A∼B,则

    f

    (

    A

    )

    f

    (

    B

    )

    ,

    f

    (

    A

    )

    f

    (

    B

    )

    f(A) \sim f(B),\left| f(A) \right| \sim \left| f(B)\right|

    f(A)∼f(B),∣f(A)∣∼∣f(B)∣,其中

    f

    (

    A

    )

    f(A)

    f(A)为关于

    n

    n

    n阶方阵

    A

    A

    A的多项式。

  3. A

    A

    A为可对角化矩阵,则其非零特征值的个数(重根重复计算)=秩(

    A

    A

    A)

4.实对称矩阵的特征值、特征向量及相似对角阵

(1)相似矩阵:设

A

,

B

A,B

A,B为两个

n

n

n阶方阵,如果存在一个可逆矩阵

P

P

P,使得

B

=

P

1

A

P

B =P^{- 1}{AP}

B=P−1AP成立,则称矩阵

A

A

A与

B

B

B相似,记为

A

B

A \sim B

A∼B。

(2)相似矩阵的性质:如果

A

B

A \sim B

A∼B则有:

  1. A

    T

    B

    T

    A^{T} \sim B^{T}

    AT∼BT

  2. A

    1

    B

    1

    A^{- 1} \sim B^{- 1}

    A−1∼B−1 (若

    A

    A

    A,

    B

    B

    B均可逆)

  3. A

    k

    B

    k

    A^{k} \sim B^{k}

    Ak∼Bk (

    k

    k

    k为正整数)

  4. λ

    E

    A

    =

    λ

    E

    B

    \left| {λE} - A \right| = \left| {λE} - B \right|

    ∣λE−A∣=∣λE−B∣,从而

    A

    ,

    B

    A,B

    A,B
    有相同的特征值

  5. A

    =

    B

    \left| A \right| = \left| B \right|

    ∣A∣=∣B∣,从而

    A

    ,

    B

    A,B

    A,B同时可逆或者不可逆

  6. (

    A

    )

    =

    \left( A \right) =

    (A)=秩

    (

    B

    )

    ,

    λ

    E

    A

    =

    λ

    E

    B

    \left( B \right),\left| {λE} - A \right| =\left| {λE} - B \right|

    (B),∣λE−A∣=∣λE−B∣,

    A

    ,

    B

    A,B

    A,B不一定相似

二次型

1.

n

\mathbf{n}

n个变量

x

1

,

x

2

,


,

x

n

\mathbf{x}_{\mathbf{1}}\mathbf{,}\mathbf{x}_{\mathbf{2}}\mathbf{,\cdots,}\mathbf{x}_{\mathbf{n}}

x1​,x2​,⋯,xn​的二次齐次函数

f

(

x

1

,

x

2

,


,

x

n

)

=

i

=

1

n

j

=

1

n

a

i

j

x

i

y

j

f(x_{1},x_{2},\cdots,x_{n}) = \sum_{i = 1}^{n}{\sum_{j =1}^{n}{a_{{ij}}x_{i}y_{j}}}

f(x1​,x2​,⋯,xn​)=∑i=1n​∑j=1n​aij​xi​yj​,其中

a

i

j

=

a

j

i

(

i

,

j

=

1

,

2

,


,

n

)

a_{{ij}} = a_{{ji}}(i,j =1,2,\cdots,n)

aij​=aji​(i,j=1,2,⋯,n),称为

n

n

n元二次型,简称二次型. 若令

x

=

[

x

1

x

1

x

n

]

,

A

=

[

a

11

a

12

a

1

n

a

21

a

22

a

2

n

a

n

1

a

n

2

a

n

n

]

x = \ \begin{bmatrix}x_{1} \\ x_{1} \\ \vdots \\ x_{n} \\ \end{bmatrix},A = \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \cdots &\cdots &\cdots &\cdots \\ a_{n1}& a_{n2} & \cdots & a_{{nn}} \\\end{bmatrix}

x= ⎣⎢⎢⎢⎡​x1​x1​⋮xn​​⎦⎥⎥⎥⎤​,A=⎣⎢⎢⎡​a11​a21​⋯an1​​a12​a22​⋯an2​​⋯⋯⋯⋯​a1n​a2n​⋯ann​​⎦⎥⎥⎤​,这二次型

f

f

f可改写成矩阵向量形式

f

=

x

T

A

x

f =x^{T}{Ax}

f=xTAx。其中

A

A

A称为二次型矩阵,因为

a

i

j

=

a

j

i

(

i

,

j

=

1

,

2

,


,

n

)

a_{{ij}} =a_{{ji}}(i,j =1,2,\cdots,n)

aij​=aji​(i,j=1,2,⋯,n),所以二次型矩阵均为对称矩阵,且二次型与对称矩阵一一对应,并把矩阵

A

A

A的秩称为二次型的秩。

2.惯性定理,二次型的标准形和规范形

(1) 惯性定理

对于任一二次型,不论选取怎样的合同变换使它化为仅含平方项的标准型,其正负惯性指数与所选变换无关,这就是所谓的惯性定理。

(2) 标准形

二次型

f

=

(

x

1

,

x

2

,


,

x

n

)

=

x

T

A

x

f = \left( x_{1},x_{2},\cdots,x_{n} \right) =x^{T}{Ax}

f=(x1​,x2​,⋯,xn​)=xTAx经过合同变换

x

=

C

y

x = {Cy}

x=Cy化为

f

=

x

T

A

x

=

y

T

C

T

A

C

f = x^{T}{Ax} =y^{T}C^{T}{AC}

f=xTAx=yTCTAC

y

=

i

=

1

r

d

i

y

i

2

y = \sum_{i = 1}^{r}{d_{i}y_{i}^{2}}

y=∑i=1r​di​yi2​称为

f

(

r

n

)

f(r \leq n)

f(r≤n)的标准形。在一般的数域内,二次型的标准形不是唯一的,与所作的合同变换有关,但系数不为零的平方项的个数由

r

(

A

)

r(A)

r(A)唯一确定。

(3) 规范形

任一实二次型

f

f

f都可经过合同变换化为规范形

f

=

z

1

2

+

z

2

2

+

z

p

2

z

p

+

1

2

z

r

2

f = z_{1}^{2} + z_{2}^{2} + \cdots z_{p}^{2} - z_{p + 1}^{2} - \cdots -z_{r}^{2}

f=z12​+z22​+⋯zp2​−zp+12​−⋯−zr2​,其中

r

r

r为

A

A

A的秩,

p

p

p为正惯性指数,

r

p

r -p

r−p为负惯性指数,且规范型唯一。

3.用正交变换和配方法化二次型为标准形,二次型及其矩阵的正定性

A

A

A正定

k

A

(

k

>

0

)

,

A

T

,

A

1

,

A

\Rightarrow {kA}(k > 0),A^{T},A^{- 1},A^{*}

⇒kA(k>0),AT,A−1,A∗正定;

A

>

0

|A| >0

∣A∣>0,

A

A

A可逆;

a

i

i

>

0

a_{{ii}} > 0

aii​>0,且

A

i

i

>

0

|A_{{ii}}| > 0

∣Aii​∣>0

A

A

A,

B

B

B正定

A

+

B

\Rightarrow A +B

⇒A+B正定,但

A

B

{AB}

AB,

B

A

{BA}

BA不一定正定

A

A

A正定

f

(

x

)

=

x

T

A

x

>

0

,

x

0

\Leftrightarrow f(x) = x^{T}{Ax} > 0,\forall x \neq 0

⇔f(x)=xTAx>0,∀x​=0

A

\Leftrightarrow A

⇔A的各阶顺序主子式全大于零

A

\Leftrightarrow A

⇔A的所有特征值大于零

A

\Leftrightarrow A

⇔A的正惯性指数为

n

n

n

\Leftrightarrow

⇔存在可逆阵

P

P

P使

A

=

P

T

P

A = P^{T}P

A=PTP

\Leftrightarrow

⇔存在正交矩阵

Q

Q

Q,使

Q

T

A

Q

=

Q

1

A

Q

=

(

λ

1

λ

n

)

,

Q^{T}{AQ} = Q^{- 1}{AQ} =\begin{pmatrix} \lambda_{1} & & \\ \begin{matrix} & \\ & \\ \end{matrix} &\ddots & \\ & & \lambda_{n} \\ \end{pmatrix},

QTAQ=Q−1AQ=⎝⎜⎜⎛​λ1​​​​⋱​λn​​⎠⎟⎟⎞​,

其中

λ

i

>

0

,

i

=

1

,

2

,


,

n

.

\lambda_{i} > 0,i = 1,2,\cdots,n.

λi​>0,i=1,2,⋯,n.正定

k

A

(

k

>

0

)

,

A

T

,

A

1

,

A

\Rightarrow {kA}(k >0),A^{T},A^{- 1},A^{*}

⇒kA(k>0),AT,A−1,A∗正定;

A

>

0

,

A

|A| > 0,A

∣A∣>0,A可逆;

a

i

i

>

0

a_{{ii}} >0

aii​>0,且

A

i

i

>

0

|A_{{ii}}| > 0

∣Aii​∣>0 。

概率论和数理统计

随机事件和概率

1.事件的关系与运算

(1) 子事件:

A

B

A \subset B

A⊂B,若

A

A

A发生,则

B

B

B发生。

(2) 相等事件:

A

=

B

A = B

A=B,即

A

B

A \subset B

A⊂B,且

B

A

B \subset A

B⊂A 。

(3) 和事件:

A

B

A\bigcup B

A⋃B(或

A

+

B

A + B

A+B),

A

A

A与

B

B

B中至少有一个发生。

(4) 差事件:

A

B

A - B

A−B,

A

A

A发生但

B

B

B不发生。

(5) 积事件:

A

B

A\bigcap B

A⋂B(或

A

B

{AB}

AB),

A

A

A与

B

B

B同时发生。

(6) 互斥事件(互不相容):

A

B

A\bigcap B

A⋂B=

\varnothing

∅。

(7) 互逆事件(对立事件):

A

B

=

,

A

B

=

Ω

,

A

=

B

ˉ

,

B

=

A

ˉ

A\bigcap B=\varnothing ,A\bigcup B=\Omega ,A=\bar{B},B=\bar{A}

A⋂B=∅,A⋃B=Ω,A=Bˉ,B=Aˉ

2.运算律
(1) 交换律:

A

B

=

B

A

,

A

B

=

B

A

A\bigcup B=B\bigcup A,A\bigcap B=B\bigcap A

A⋃B=B⋃A,A⋂B=B⋂A
(2) 结合律:

(

A

B

)

C

=

A

(

B

C

)

(A\bigcup B)\bigcup C=A\bigcup (B\bigcup C)

(A⋃B)⋃C=A⋃(B⋃C)
(3) 分配律:

(

A

B

)

C

=

A

(

B

C

)

(A\bigcap B)\bigcap C=A\bigcap (B\bigcap C)

(A⋂B)⋂C=A⋂(B⋂C)

3.德

\centerdot

⋅摩根律

A

B

=

A

ˉ

B

ˉ

\overline{A\bigcup B}=\bar{A}\bigcap \bar{B}

A⋃B​=Aˉ⋂Bˉ

A

B

=

A

ˉ

B

ˉ

\overline{A\bigcap B}=\bar{A}\bigcup \bar{B}

A⋂B​=Aˉ⋃Bˉ
4.完全事件组

A

1

A

2

A

n

{{A}_{1}}{{A}_{2}}\cdots {{A}{n}}

A1​A2​⋯An 两两互斥,且和事件为必然事件,即

A

i

A

j

=

,

i

j

,

i

=

1

n

=

Ω

{A_i} \bigcap {A_j}=\varnothing, i \ne j ,\bigcup_{i=1}^{n} = \Omega

Ai​⋂Aj​=∅,i​=j,⋃i=1n​=Ω

5.概率的基本公式
(1)条件概率:

P

(

B

A

)

=

P

(

A

B

)

P

(

A

)

P(B|A)=\frac{P(AB)}{P(A)}

P(B∣A)=P(A)P(AB)​,表示

A

A

A发生的条件下,

B

B

B发生的概率。
(2)全概率公式:

P

(

A

)

=

i

=

1

n

P

(

A

B

i

)

P

(

B

i

)

,

B

i

B

j

=

,

i

j

,

n

i

=

1

B

i

=

Ω

P(A)=\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}}),{{B}_{i}}{{B}_{j}}}=\varnothing ,i\ne j,\underset{i=1}{\overset{n}{\mathop{\bigcup }}}\,{{B}_{i}}=\Omega

P(A)=i=1∑n​P(A∣Bi​)P(Bi​),Bi​Bj​=∅,i​=j,i=1⋃n​​Bi​=Ω
(3) Bayes公式:

P

(

B

j

A

)

=

P

(

A

B

j

)

P

(

B

j

)

i

=

1

n

P

(

A

B

i

)

P

(

B

i

)

,

j

=

1

,

2

,


,

n

P({{B}_{j}}|A)=\frac{P(A|{{B}_{j}})P({{B}_{j}})}{\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}})}},j=1,2,\cdots ,n

P(Bj​∣A)=i=1∑n​P(A∣Bi​)P(Bi​)P(A∣Bj​)P(Bj​)​,j=1,2,⋯,n
注:上述公式中事件

B

i

{{B}_{i}}

Bi​的个数可为可列个。
(4)乘法公式:

P

(

A

1

A

2

)

=

P

(

A

1

)

P

(

A

2

A

1

)

=

P

(

A

2

)

P

(

A

1

A

2

)

P({{A}_{1}}{{A}_{2}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})=P({{A}_{2}})P({{A}_{1}}|{{A}_{2}})

P(A1​A2​)=P(A1​)P(A2​∣A1​)=P(A2​)P(A1​∣A2​)

P

(

A

1

A

2

A

n

)

=

P

(

A

1

)

P

(

A

2

A

1

)

P

(

A

3

A

1

A

2

)

P

(

A

n

A

1

A

2

A

n

1

)

P({{A}_{1}}{{A}_{2}}\cdots {{A}_{n}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})P({{A}_{3}}|{{A}_{1}}{{A}_{2}})\cdots P({{A}_{n}}|{{A}_{1}}{{A}_{2}}\cdots {{A}_{n-1}})

P(A1​A2​⋯An​)=P(A1​)P(A2​∣A1​)P(A3​∣A1​A2​)⋯P(An​∣A1​A2​⋯An−1​)

6.事件的独立性
(1)

A

A

A与

B

B

B相互独立

P

(

A

B

)

=

P

(

A

)

P

(

B

)

\Leftrightarrow P(AB)=P(A)P(B)

⇔P(AB)=P(A)P(B)
(2)

A

A

A,

B

B

B,

C

C

C两两独立

P

(

A

B

)

=

P

(

A

)

P

(

B

)

\Leftrightarrow P(AB)=P(A)P(B)

⇔P(AB)=P(A)P(B);

P

(

B

C

)

=

P

(

B

)

P

(

C

)

P(BC)=P(B)P(C)

P(BC)=P(B)P(C) ;

P

(

A

C

)

=

P

(

A

)

P

(

C

)

P(AC)=P(A)P(C)

P(AC)=P(A)P(C);
(3)

A

A

A,

B

B

B,

C

C

C相互独立

P

(

A

B

)

=

P

(

A

)

P

(

B

)

\Leftrightarrow P(AB)=P(A)P(B)

⇔P(AB)=P(A)P(B);

P

(

B

C

)

=

P

(

B

)

P

(

C

)

P(BC)=P(B)P(C)

P(BC)=P(B)P(C) ;

P

(

A

C

)

=

P

(

A

)

P

(

C

)

P(AC)=P(A)P(C)

P(AC)=P(A)P(C) ;

P

(

A

B

C

)

=

P

(

A

)

P

(

B

)

P

(

C

)

P(ABC)=P(A)P(B)P(C)

P(ABC)=P(A)P(B)P(C)

7.独立重复试验

将某试验独立重复

n

n

n次,若每次实验中事件A发生的概率为

p

p

p,则

n

n

n次试验中

A

A

A发生

k

k

k次的概率为:

P

(

X

=

k

)

=

C

n

k

p

k

(

1

p

)

n

k

P(X=k)=C_{n}^{k}{{p}^{k}}{{(1-p)}^{n-k}}

P(X=k)=Cnk​pk(1−p)n−k
8.重要公式与结论

(

1

)

P

(

A

ˉ

)

=

1

P

(

A

)

(1)P(\bar{A})=1-P(A)

(1)P(Aˉ)=1−P(A)

(

2

)

P

(

A

B

)

=

P

(

A

)

+

P

(

B

)

P

(

A

B

)

(2)P(A\bigcup B)=P(A)+P(B)-P(AB)

(2)P(A⋃B)=P(A)+P(B)−P(AB)

P

(

A

B

C

)

=

P

(

A

)

+

P

(

B

)

+

P

(

C

)

P

(

A

B

)

P

(

B

C

)

P

(

A

C

)

+

P

(

A

B

C

)

P(A\bigcup B\bigcup C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)

P(A⋃B⋃C)=P(A)+P(B)+P(C)−P(AB)−P(BC)−P(AC)+P(ABC)

(

3

)

P

(

A

B

)

=

P

(

A

)

P

(

A

B

)

(3)P(A-B)=P(A)-P(AB)

(3)P(A−B)=P(A)−P(AB)

(

4

)

P

(

A

B

ˉ

)

=

P

(

A

)

P

(

A

B

)

,

P

(

A

)

=

P

(

A

B

)

+

P

(

A

B

ˉ

)

,

(4)P(A\bar{B})=P(A)-P(AB),P(A)=P(AB)+P(A\bar{B}),

(4)P(ABˉ)=P(A)−P(AB),P(A)=P(AB)+P(ABˉ),

P

(

A

B

)

=

P

(

A

)

+

P

(

A

ˉ

B

)

=

P

(

A

B

)

+

P

(

A

B

ˉ

)

+

P

(

A

ˉ

B

)

P(A\bigcup B)=P(A)+P(\bar{A}B)=P(AB)+P(A\bar{B})+P(\bar{A}B)

P(A⋃B)=P(A)+P(AˉB)=P(AB)+P(ABˉ)+P(AˉB)
(5)条件概率

P

(

B

)

P(\centerdot |B)

P(⋅∣B)满足概率的所有性质,
例如:.

P

(

A

ˉ

1

B

)

=

1

P

(

A

1

B

)

P({{\bar{A}}_{1}}|B)=1-P({{A}_{1}}|B)

P(Aˉ1​∣B)=1−P(A1​∣B)

P

(

A

1

A

2

B

)

=

P

(

A

1

B

)

+

P

(

A

2

B

)

P

(

A

1

A

2

B

)

P({{A}_{1}}\bigcup {{A}_{2}}|B)=P({{A}_{1}}|B)+P({{A}_{2}}|B)-P({{A}_{1}}{{A}_{2}}|B)

P(A1​⋃A2​∣B)=P(A1​∣B)+P(A2​∣B)−P(A1​A2​∣B)

P

(

A

1

A

2

B

)

=

P

(

A

1

B

)

P

(

A

2

A

1

B

)

P({{A}_{1}}{{A}_{2}}|B)=P({{A}_{1}}|B)P({{A}_{2}}|{{A}_{1}}B)

P(A1​A2​∣B)=P(A1​∣B)P(A2​∣A1​B)
(6)若

A

1

,

A

2

,


,

A

n

{{A}_{1}},{{A}_{2}},\cdots ,{{A}_{n}}

A1​,A2​,⋯,An​相互独立,则

P

(

i

=

1

n

A

i

)

=

i

=

1

n

P

(

A

i

)

,

P(\bigcap\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{P({{A}_{i}})},

P(i=1⋂n​Ai​)=i=1∏n​P(Ai​),

P

(

i

=

1

n

A

i

)

=

i

=

1

n

(

1

P

(

A

i

)

)

P(\bigcup\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{(1-P({{A}_{i}}))}

P(i=1⋃n​Ai​)=i=1∏n​(1−P(Ai​))
(7)互斥、互逆与独立性之间的关系:

A

A

A与

B

B

B互逆

\Rightarrow

A

A

A与

B

B

B互斥,但反之不成立,

A

A

A与

B

B

B互斥(或互逆)且均非零概率事件

\Rightarrow

A

A

A 与

B

B

B 不独立.
(8)若

A

1

,

A

2

,


,

A

m

,

B

1

,

B

2

,


,

B

n

{{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}},{{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}}

A1​,A2​,⋯,Am​,B1​,B2​,⋯,Bn​ 相互独立,则

f

(

A

1

,

A

2

,


,

A

m

)

f({{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}})

f(A1​,A2​,⋯,Am​) 与

g

(

B

1

,

B

2

,


,

B

n

)

g({{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}})

g(B1​,B2​,⋯,Bn​) 也相互独立,其中

f

(

)

,

g

(

)

f(\centerdot ),g(\centerdot )

f(⋅),g(⋅) 分别表示对相应事件做任意事件运算后所得的事件,另外,概率为1(或0)的事件与任何事件相互独立.

随机变量及其概率分布

1.随机变量及概率分布

取值带有随机性的变量,严格地说是定义在样本空间上,取值于实数的函数称为随机变量,概率分布通常指分布函数或分布律

2.分布函数的概念与性质

定义:

F

(

x

)

=

P

(

X

x

)

,

<

x

<

+

F(x) = P(X \leq x), - \infty < x < + \infty

F(x)=P(X≤x),−∞<x<+∞

性质:(1)

0

F

(

x

)

1

0 \leq F(x) \leq 1

0≤F(x)≤1

(2)

F

(

x

)

F(x)

F(x)单调不减

(3) 右连续

F

(

x

+

0

)

=

F

(

x

)

F(x + 0) = F(x)

F(x+0)=F(x)

(4)

F

(

)

=

0

,

F

(

+

)

=

1

F( - \infty) = 0,F( + \infty) = 1

F(−∞)=0,F(+∞)=1

3.离散型随机变量的概率分布

P

(

X

=

x

i

)

=

p

i

,

i

=

1

,

2

,


,

n

,

p

i

0

,

i

=

1

p

i

=

1

P(X = x_{i}) = p_{i},i = 1,2,\cdots,n,\cdots\quad\quad p_{i} \geq 0,\sum_{i =1}^{\infty}p_{i} = 1

P(X=xi​)=pi​,i=1,2,⋯,n,⋯pi​≥0,∑i=1∞​pi​=1

4.连续型随机变量的概率密度

概率密度

f

(

x

)

f(x)

f(x);非负可积,且:

(1)

f

(

x

)

0

,

f(x) \geq 0,

f(x)≥0,

(2)

+

f

(

x

)

d

x

=

1

\int_{- \infty}^{+\infty}{f(x){dx} = 1}

∫−∞+∞​f(x)dx=1

(3)

x

x

x为

f

(

x

)

f(x)

f(x)的连续点,则:

f

(

x

)

=

F

(

x

)

f(x) = F'(x)

f(x)=F′(x)分布函数

F

(

x

)

=

x

f

(

t

)

d

t

F(x) = \int_{- \infty}^{x}{f(t){dt}}

F(x)=∫−∞x​f(t)dt

5.常见分布

(1) 0-1分布:

P

(

X

=

k

)

=

p

k

(

1

p

)

1

k

,

k

=

0

,

1

P(X = k) = p^{k}{(1 - p)}^{1 - k},k = 0,1

P(X=k)=pk(1−p)1−k,k=0,1

(2) 二项分布:

B

(

n

,

p

)

B(n,p)

B(n,p):

P

(

X

=

k

)

=

C

n

k

p

k

(

1

p

)

n

k

,

k

=

0

,

1

,


,

n

P(X = k) = C_{n}^{k}p^{k}{(1 - p)}^{n - k},k =0,1,\cdots,n

P(X=k)=Cnk​pk(1−p)n−k,k=0,1,⋯,n

(3) Poisson分布:

p

(

λ

)

p(\lambda)

p(λ):

P

(

X

=

k

)

=

λ

k

k

!

e

λ

,

λ

>

0

,

k

=

0

,

1

,

2

P(X = k) = \frac{\lambda^{k}}{k!}e^{-\lambda},\lambda > 0,k = 0,1,2\cdots

P(X=k)=k!λk​e−λ,λ>0,k=0,1,2⋯

(4) 均匀分布

U

(

a

,

b

)

U(a,b)

U(a,b):

f

(

x

)

=

{

1

b

a

,

a

<

x

<

b

0

,

f(x) = \{ \begin{matrix} & \frac{1}{b - a},a < x< b \\ & 0, \\ \end{matrix}

f(x)={​b−a1​,a<x<b0,​

(5) 正态分布:

N

(

μ

,

σ

2

)

:

N(\mu,\sigma^{2}):

N(μ,σ2):

φ

(

x

)

=

1

2

π

σ

e

(

x

μ

)

2

2

σ

2

,

σ

>

0

,

<

x

<

+

\varphi(x) =\frac{1}{\sqrt{2\pi}\sigma}e^{- \frac{{(x - \mu)}^{2}}{2\sigma^{2}}},\sigma > 0,\infty < x < + \infty

φ(x)=2π

​σ1​e−2σ2(x−μ)2​,σ>0,∞<x<+∞

(6)指数分布:

E

(

λ

)

:

f

(

x

)

=

{

λ

e

λ

x

,

x

>

0

,

λ

>

0

0

,

E(\lambda):f(x) =\{ \begin{matrix} & \lambda e^{-{λx}},x > 0,\lambda > 0 \\ & 0, \\ \end{matrix}

E(λ):f(x)={​λe−λx,x>0,λ>00,​

(7)几何分布:

G

(

p

)

:

P

(

X

=

k

)

=

(

1

p

)

k

1

p

,

0

<

p

<

1

,

k

=

1

,

2

,


.

G(p):P(X = k) = {(1 - p)}^{k - 1}p,0 < p < 1,k = 1,2,\cdots.

G(p):P(X=k)=(1−p)k−1p,0<p<1,k=1,2,⋯.

(8)超几何分布:

H

(

N

,

M

,

n

)

:

P

(

X

=

k

)

=

C

M

k

C

N

M

n

k

C

N

n

,

k

=

0

,

1

,


,

m

i

n

(

n

,

M

)

H(N,M,n):P(X = k) = \frac{C_{M}^{k}C_{N - M}^{n -k}}{C_{N}^{n}},k =0,1,\cdots,min(n,M)

H(N,M,n):P(X=k)=CNn​CMk​CN−Mn−k​​,k=0,1,⋯,min(n,M)

6.随机变量函数的概率分布

(1)离散型:

P

(

X

=

x

1

)

=

p

i

,

Y

=

g

(

X

)

P(X = x_{1}) = p_{i},Y = g(X)

P(X=x1​)=pi​,Y=g(X)

则:

P

(

Y

=

y

j

)

=

g

(

x

i

)

=

y

i

P

(

X

=

x

i

)

P(Y = y_{j}) = \sum_{g(x_{i}) = y_{i}}^{}{P(X = x_{i})}

P(Y=yj​)=∑g(xi​)=yi​​P(X=xi​)

(2)连续型:

X

~

f

X

(

x

)

,

Y

=

g

(

x

)

X\tilde{\ }f_{X}(x),Y = g(x)

X ~fX​(x),Y=g(x)

则:

F

y

(

y

)

=

P

(

Y

y

)

=

P

(

g

(

X

)

y

)

=

g

(

x

)

y

f

x

(

x

)

d

x

F_{y}(y) = P(Y \leq y) = P(g(X) \leq y) = \int_{g(x) \leq y}^{}{f_{x}(x)dx}

Fy​(y)=P(Y≤y)=P(g(X)≤y)=∫g(x)≤y​fx​(x)dx,

f

Y

(

y

)

=

F

Y

(

y

)

f_{Y}(y) = F'_{Y}(y)

fY​(y)=FY′​(y)

7.重要公式与结论

(1)

X

N

(

0

,

1

)

φ

(

0

)

=

1

2

π

,

Φ

(

0

)

=

1

2

,

X\sim N(0,1) \Rightarrow \varphi(0) = \frac{1}{\sqrt{2\pi}},\Phi(0) =\frac{1}{2},

X∼N(0,1)⇒φ(0)=2π

​1​,Φ(0)=21​,

Φ

(

a

)

=

P

(

X

a

)

=

1

Φ

(

a

)

\Phi( - a) = P(X \leq - a) = 1 - \Phi(a)

Φ(−a)=P(X≤−a)=1−Φ(a)

(2)

X

N

(

μ

,

σ

2

)

X

μ

σ

N

(

0

,

1

)

,

P

(

X

a

)

=

Φ

(

a

μ

σ

)

X\sim N\left( \mu,\sigma^{2} \right) \Rightarrow \frac{X -\mu}{\sigma}\sim N\left( 0,1 \right),P(X \leq a) = \Phi(\frac{a -\mu}{\sigma})

X∼N(μ,σ2)⇒σX−μ​∼N(0,1),P(X≤a)=Φ(σa−μ​)

(3)

X

E

(

λ

)

P

(

X

>

s

+

t

X

>

s

)

=

P

(

X

>

t

)

X\sim E(\lambda) \Rightarrow P(X > s + t|X > s) = P(X > t)

X∼E(λ)⇒P(X>s+t∣X>s)=P(X>t)

(4)

X

G

(

p

)

P

(

X

=

m

+

k

X

>

m

)

=

P

(

X

=

k

)

X\sim G(p) \Rightarrow P(X = m + k|X > m) = P(X = k)

X∼G(p)⇒P(X=m+k∣X>m)=P(X=k)

(5) 离散型随机变量的分布函数为阶梯间断函数;连续型随机变量的分布函数为连续函数,但不一定为处处可导函数。

(6) 存在既非离散也非连续型随机变量。

多维随机变量及其分布

1.二维随机变量及其联合分布

由两个随机变量构成的随机向量

(

X

,

Y

)

(X,Y)

(X,Y), 联合分布为

F

(

x

,

y

)

=

P

(

X

x

,

Y

y

)

F(x,y) = P(X \leq x,Y \leq y)

F(x,y)=P(X≤x,Y≤y)

2.二维离散型随机变量的分布

(1) 联合概率分布律

P

{

X

=

x

i

,

Y

=

y

j

}

=

p

i

j

;

i

,

j

=

1

,

2

,

P\{ X = x_{i},Y = y_{j}\} = p_{{ij}};i,j =1,2,\cdots

P{X=xi​,Y=yj​}=pij​;i,j=1,2,⋯

(2) 边缘分布律

p

i

=

j

=

1

p

i

j

,

i

=

1

,

2

,

p_{i \cdot} = \sum_{j = 1}^{\infty}p_{{ij}},i =1,2,\cdots

pi⋅​=∑j=1∞​pij​,i=1,2,⋯

p

j

=

i

p

i

j

,

j

=

1

,

2

,

p_{\cdot j} = \sum_{i}^{\infty}p_{{ij}},j = 1,2,\cdots

p⋅j​=∑i∞​pij​,j=1,2,⋯

(3) 条件分布律

P

{

X

=

x

i

Y

=

y

j

}

=

p

i

j

p

j

P\{ X = x_{i}|Y = y_{j}\} = \frac{p_{{ij}}}{p_{\cdot j}}

P{X=xi​∣Y=yj​}=p⋅j​pij​​

P

{

Y

=

y

j

X

=

x

i

}

=

p

i

j

p

i

P\{ Y = y_{j}|X = x_{i}\} = \frac{p_{{ij}}}{p_{i \cdot}}

P{Y=yj​∣X=xi​}=pi⋅​pij​​

3. 二维连续性随机变量的密度

(1) 联合概率密度

f

(

x

,

y

)

:

f(x,y):

f(x,y):

  1. f

    (

    x

    ,

    y

    )

    0

    f(x,y) \geq 0

    f(x,y)≥0

  2. +

    +

    f

    (

    x

    ,

    y

    )

    d

    x

    d

    y

    =

    1

    \int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{f(x,y)dxdy}} = 1

    ∫−∞+∞​∫−∞+∞​f(x,y)dxdy=1

(2) 分布函数:

F

(

x

,

y

)

=

x

y

f

(

u

,

v

)

d

u

d

v

F(x,y) = \int_{- \infty}^{x}{\int_{- \infty}^{y}{f(u,v)dudv}}

F(x,y)=∫−∞x​∫−∞y​f(u,v)dudv

(3) 边缘概率密度:

f

X

(

x

)

=

+

f

(

x

,

y

)

d

y

f_{X}\left( x \right) = \int_{- \infty}^{+ \infty}{f\left( x,y \right){dy}}

fX​(x)=∫−∞+∞​f(x,y)dy

f

Y

(

y

)

=

+

f

(

x

,

y

)

d

x

f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}

fY​(y)=∫−∞+∞​f(x,y)dx

(4) 条件概率密度:

f

X

Y

(

x

|

y

)

=

f

(

x

,

y

)

f

Y

(

y

)

f_{X|Y}\left( x \middle| y \right) = \frac{f\left( x,y \right)}{f_{Y}\left( y \right)}

fX∣Y​(x∣y)=fY​(y)f(x,y)​

f

Y

X

(

y

x

)

=

f

(

x

,

y

)

f

X

(

x

)

f_{Y|X}(y|x) = \frac{f(x,y)}{f_{X}(x)}

fY∣X​(y∣x)=fX​(x)f(x,y)​

4.常见二维随机变量的联合分布

(1) 二维均匀分布:

(

x

,

y

)

U

(

D

)

(x,y) \sim U(D)

(x,y)∼U(D) ,

f

(

x

,

y

)

=

{

1

S

(

D

)

,

(

x

,

y

)

D

0

,

f(x,y) = \begin{cases} \frac{1}{S(D)},(x,y) \in D \\ 0,其他 \end{cases}

f(x,y)={S(D)1​,(x,y)∈D0,其他​

(2) 二维正态分布:

(

X

,

Y

)

N

(

μ

1

,

μ

2

,

σ

1

2

,

σ

2

2

,

ρ

)

(X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)

(X,Y)∼N(μ1​,μ2​,σ12​,σ22​,ρ),

(

X

,

Y

)

N

(

μ

1

,

μ

2

,

σ

1

2

,

σ

2

2

,

ρ

)

(X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)

(X,Y)∼N(μ1​,μ2​,σ12​,σ22​,ρ)

f

(

x

,

y

)

=

1

2

π

σ

1

σ

2

1

ρ

2

.

exp

{

1

2

(

1

ρ

2

)

[

(

x

μ

1

)

2

σ

1

2

2

ρ

(

x

μ

1

)

(

y

μ

2

)

σ

1

σ

2

+

(

y

μ

2

)

2

σ

2

2

]

}

f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1 - \rho^{2}}}.\exp\left\{ \frac{- 1}{2(1 - \rho^{2})}\lbrack\frac{{(x - \mu_{1})}^{2}}{\sigma_{1}^{2}} - 2\rho\frac{(x - \mu_{1})(y - \mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{{(y - \mu_{2})}^{2}}{\sigma_{2}^{2}}\rbrack \right\}

f(x,y)=2πσ1​σ2​1−ρ2

​1​.exp{2(1−ρ2)−1​[σ12​(x−μ1​)2​−2ρσ1​σ2​(x−μ1​)(y−μ2​)​+σ22​(y−μ2​)2​]}

5.随机变量的独立性和相关性

X

X

X和

Y

Y

Y的相互独立:

F

(

x

,

y

)

=

F

X

(

x

)

F

Y

(

y

)

\Leftrightarrow F\left( x,y \right) = F_{X}\left( x \right)F_{Y}\left( y \right)

⇔F(x,y)=FX​(x)FY​(y):

p

i

j

=

p

i

p

j

\Leftrightarrow p_{{ij}} = p_{i \cdot} \cdot p_{\cdot j}

⇔pij​=pi⋅​⋅p⋅j​(离散型)

f

(

x

,

y

)

=

f

X

(

x

)

f

Y

(

y

)

\Leftrightarrow f\left( x,y \right) = f_{X}\left( x \right)f_{Y}\left( y \right)

⇔f(x,y)=fX​(x)fY​(y)(连续型)

X

X

X和

Y

Y

Y的相关性:

相关系数

ρ

X

Y

=

0

\rho_{{XY}} = 0

ρXY​=0时,称

X

X

X和

Y

Y

Y不相关,
否则称

X

X

X和

Y

Y

Y相关

6.两个随机变量简单函数的概率分布

离散型:

P

(

X

=

x

i

,

Y

=

y

i

)

=

p

i

j

,

Z

=

g

(

X

,

Y

)

P\left( X = x_{i},Y = y_{i} \right) = p_{{ij}},Z = g\left( X,Y \right)

P(X=xi​,Y=yi​)=pij​,Z=g(X,Y) 则:

P

(

Z

=

z

k

)

=

P

{

g

(

X

,

Y

)

=

z

k

}

=

g

(

x

i

,

y

i

)

=

z

k

P

(

X

=

x

i

,

Y

=

y

j

)

P(Z = z_{k}) = P\left\{ g\left( X,Y \right) = z_{k} \right\} = \sum_{g\left( x_{i},y_{i} \right) = z_{k}}^{}{P\left( X = x_{i},Y = y_{j} \right)}

P(Z=zk​)=P{g(X,Y)=zk​}=∑g(xi​,yi​)=zk​​P(X=xi​,Y=yj​)

连续型:

(

X

,

Y

)

f

(

x

,

y

)

,

Z

=

g

(

X

,

Y

)

\left( X,Y \right) \sim f\left( x,y \right),Z = g\left( X,Y \right)

(X,Y)∼f(x,y),Z=g(X,Y)
则:

F

z

(

z

)

=

P

{

g

(

X

,

Y

)

z

}

=

g

(

x

,

y

)

z

f

(

x

,

y

)

d

x

d

y

F_{z}\left( z \right) = P\left\{ g\left( X,Y \right) \leq z \right\} = \iint_{g(x,y) \leq z}^{}{f(x,y)dxdy}

Fz​(z)=P{g(X,Y)≤z}=∬g(x,y)≤z​f(x,y)dxdy,

f

z

(

z

)

=

F

z

(

z

)

f_{z}(z) = F'_{z}(z)

fz​(z)=Fz′​(z)

7.重要公式与结论

(1) 边缘密度公式:

f

X

(

x

)

=

+

f

(

x

,

y

)

d

y

,

f_{X}(x) = \int_{- \infty}^{+ \infty}{f(x,y)dy,}

fX​(x)=∫−∞+∞​f(x,y)dy,

f

Y

(

y

)

=

+

f

(

x

,

y

)

d

x

f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}

fY​(y)=∫−∞+∞​f(x,y)dx

(2)

P

{

(

X

,

Y

)

D

}

=

D

f

(

x

,

y

)

d

x

d

y

P\left\{ \left( X,Y \right) \in D \right\} = \iint_{D}^{}{f\left( x,y \right){dxdy}}

P{(X,Y)∈D}=∬D​f(x,y)dxdy

(3) 若

(

X

,

Y

)

(X,Y)

(X,Y)服从二维正态分布

N

(

μ

1

,

μ

2

,

σ

1

2

,

σ

2

2

,

ρ

)

N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)

N(μ1​,μ2​,σ12​,σ22​,ρ)
则有:

  1. X

    N

    (

    μ

    1

    ,

    σ

    1

    2

    )

    ,

    Y

    N

    (

    μ

    2

    ,

    σ

    2

    2

    )

    .

    X\sim N\left( \mu_{1},\sigma_{1}^{2} \right),Y\sim N(\mu_{2},\sigma_{2}^{2}).

    X∼N(μ1​,σ12​),Y∼N(μ2​,σ22​).

  2. X

    X

    X与

    Y

    Y

    Y相互独立

    ρ

    =

    0

    \Leftrightarrow \rho = 0

    ⇔ρ=0,即

    X

    X

    X与

    Y

    Y

    Y不相关。

  3. C

    1

    X

    +

    C

    2

    Y

    N

    (

    C

    1

    μ

    1

    +

    C

    2

    μ

    2

    ,

    C

    1

    2

    σ

    1

    2

    +

    C

    2

    2

    σ

    2

    2

    +

    2

    C

    1

    C

    2

    σ

    1

    σ

    2

    ρ

    )

    C_{1}X + C_{2}Y\sim N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} + C_{2}^{2}\sigma_{2}^{2} + 2C_{1}C_{2}\sigma_{1}\sigma_{2}\rho)

    C1​X+C2​Y∼N(C1​μ1​+C2​μ2​,C12​σ12​+C22​σ22​+2C1​C2​σ1​σ2​ρ)

  4. X

    {\ X}

    X关于

    Y

    =

    y

    Y=y

    Y=y的条件分布为:

    N

    (

    μ

    1

    +

    ρ

    σ

    1

    σ

    2

    (

    y

    μ

    2

    )

    ,

    σ

    1

    2

    (

    1

    ρ

    2

    )

    )

    N(\mu_{1} + \rho\frac{\sigma_{1}}{\sigma_{2}}(y - \mu_{2}),\sigma_{1}^{2}(1 - \rho^{2}))

    N(μ1​+ρσ2​σ1​​(y−μ2​),σ12​(1−ρ2))

  5. Y

    Y

    Y关于

    X

    =

    x

    X = x

    X=x的条件分布为:

    N

    (

    μ

    2

    +

    ρ

    σ

    2

    σ

    1

    (

    x

    μ

    1

    )

    ,

    σ

    2

    2

    (

    1

    ρ

    2

    )

    )

    N(\mu_{2} + \rho\frac{\sigma_{2}}{\sigma_{1}}(x - \mu_{1}),\sigma_{2}^{2}(1 - \rho^{2}))

    N(μ2​+ρσ1​σ2​​(x−μ1​),σ22​(1−ρ2))

(4) 若

X

X

X与

Y

Y

Y独立,且分别服从

N

(

μ

1

,

σ

1

2

)

,

N

(

μ

1

,

σ

2

2

)

,

N(\mu_{1},\sigma_{1}^{2}),N(\mu_{1},\sigma_{2}^{2}),

N(μ1​,σ12​),N(μ1​,σ22​),
则:

(

X

,

Y

)

N

(

μ

1

,

μ

2

,

σ

1

2

,

σ

2

2

,

0

)

,

\left( X,Y \right)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},0),

(X,Y)∼N(μ1​,μ2​,σ12​,σ22​,0),

C

1

X

+

C

2

Y

~

N

(

C

1

μ

1

+

C

2

μ

2

,

C

1

2

σ

1

2

C

2

2

σ

2

2

)

.

C_{1}X + C_{2}Y\tilde{\ }N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} C_{2}^{2}\sigma_{2}^{2}).

C1​X+C2​Y ~N(C1​μ1​+C2​μ2​,C12​σ12​C22​σ22​).

(5) 若

X

X

X与

Y

Y

Y相互独立,

f

(

x

)

f\left( x \right)

f(x)和

g

(

x

)

g\left( x \right)

g(x)为连续函数, 则

f

(

X

)

f\left( X \right)

f(X)和

g

(

Y

)

g(Y)

g(Y)也相互独立。

随机变量的数字特征

1.数学期望

离散型:

P

{

X

=

x

i

}

=

p

i

,

E

(

X

)

=

i

x

i

p

i

P\left\{ X = x_{i} \right\} = p_{i},E(X) = \sum_{i}^{}{x_{i}p_{i}}

P{X=xi​}=pi​,E(X)=∑i​xi​pi​;

连续型:

X

f

(

x

)

,

E

(

X

)

=

+

x

f

(

x

)

d

x

X\sim f(x),E(X) = \int_{- \infty}^{+ \infty}{xf(x)dx}

X∼f(x),E(X)=∫−∞+∞​xf(x)dx

性质:

(1)

E

(

C

)

=

C

,

E

[

E

(

X

)

]

=

E

(

X

)

E(C) = C,E\lbrack E(X)\rbrack = E(X)

E(C)=C,E[E(X)]=E(X)

(2)

E

(

C

1

X

+

C

2

Y

)

=

C

1

E

(

X

)

+

C

2

E

(

Y

)

E(C_{1}X + C_{2}Y) = C_{1}E(X) + C_{2}E(Y)

E(C1​X+C2​Y)=C1​E(X)+C2​E(Y)

(3) 若

X

X

X和

Y

Y

Y独立,则

E

(

X

Y

)

=

E

(

X

)

E

(

Y

)

E(XY) = E(X)E(Y)

E(XY)=E(X)E(Y)

(4)

[

E

(

X

Y

)

]

2

E

(

X

2

)

E

(

Y

2

)

\left\lbrack E(XY) \right\rbrack^{2} \leq E(X^{2})E(Y^{2})

[E(XY)]2≤E(X2)E(Y2)

2.方差

D

(

X

)

=

E

[

X

E

(

X

)

]

2

=

E

(

X

2

)

[

E

(

X

)

]

2

D(X) = E\left\lbrack X - E(X) \right\rbrack^{2} = E(X^{2}) - \left\lbrack E(X) \right\rbrack^{2}

D(X)=E[X−E(X)]2=E(X2)−[E(X)]2

3.标准差

D

(

X

)

\sqrt{D(X)}

D(X)

​,

4.离散型:

D

(

X

)

=

i

[

x

i

E

(

X

)

]

2

p

i

D(X) = \sum_{i}^{}{\left\lbrack x_{i} - E(X) \right\rbrack^{2}p_{i}}

D(X)=∑i​[xi​−E(X)]2pi​

5.连续型:

D

(

X

)

=

+

[

x

E

(

X

)

]

2

f

(

x

)

d

x

D(X) = {\int_{- \infty}^{+ \infty}\left\lbrack x - E(X) \right\rbrack}^{2}f(x)dx

D(X)=∫−∞+∞​[x−E(X)]2f(x)dx

性质:

(1)

D

(

C

)

=

0

,

D

[

E

(

X

)

]

=

0

,

D

[

D

(

X

)

]

=

0

\ D(C) = 0,D\lbrack E(X)\rbrack = 0,D\lbrack D(X)\rbrack = 0

D(C)=0,D[E(X)]=0,D[D(X)]=0

(2)

X

X

X与

Y

Y

Y相互独立,则

D

(

X

±

Y

)

=

D

(

X

)

+

D

(

Y

)

D(X \pm Y) = D(X) + D(Y)

D(X±Y)=D(X)+D(Y)

(3)

D

(

C

1

X

+

C

2

)

=

C

1

2

D

(

X

)

\ D\left( C_{1}X + C_{2} \right) = C_{1}^{2}D\left( X \right)

D(C1​X+C2​)=C12​D(X)

(4) 一般有

D

(

X

±

Y

)

=

D

(

X

)

+

D

(

Y

)

±

2

C

o

v

(

X

,

Y

)

=

D

(

X

)

+

D

(

Y

)

±

2

ρ

D

(

X

)

D

(

Y

)

D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y) = D(X) + D(Y) \pm 2\rho\sqrt{D(X)}\sqrt{D(Y)}

D(X±Y)=D(X)+D(Y)±2Cov(X,Y)=D(X)+D(Y)±2ρD(X)

​D(Y)

(5)

D

(

X

)

<

E

(

X

C

)

2

,

C

E

(

X

)

\ D\left( X \right) < E\left( X - C \right)^{2},C \neq E\left( X \right)

D(X)<E(X−C)2,C​=E(X)

(6)

D

(

X

)

=

0

P

{

X

=

C

}

=

1

\ D(X) = 0 \Leftrightarrow P\left\{ X = C \right\} = 1

D(X)=0⇔P{X=C}=1

6.随机变量函数的数学期望

(1) 对于函数

Y

=

g

(

x

)

Y = g(x)

Y=g(x)

X

X

X为离散型:

P

{

X

=

x

i

}

=

p

i

,

E

(

Y

)

=

i

g

(

x

i

)

p

i

P\{ X = x_{i}\} = p_{i},E(Y) = \sum_{i}^{}{g(x_{i})p_{i}}

P{X=xi​}=pi​,E(Y)=∑i​g(xi​)pi​;

X

X

X为连续型:

X

f

(

x

)

,

E

(

Y

)

=

+

g

(

x

)

f

(

x

)

d

x

X\sim f(x),E(Y) = \int_{- \infty}^{+ \infty}{g(x)f(x)dx}

X∼f(x),E(Y)=∫−∞+∞​g(x)f(x)dx

(2)

Z

=

g

(

X

,

Y

)

Z = g(X,Y)

Z=g(X,Y);

(

X

,

Y

)

P

{

X

=

x

i

,

Y

=

y

j

}

=

p

i

j

\left( X,Y \right)\sim P\{ X = x_{i},Y = y_{j}\} = p_{{ij}}

(X,Y)∼P{X=xi​,Y=yj​}=pij​;

E

(

Z

)

=

i

j

g

(

x

i

,

y

j

)

p

i

j

E(Z) = \sum_{i}^{}{\sum_{j}^{}{g(x_{i},y_{j})p_{{ij}}}}

E(Z)=∑i​∑j​g(xi​,yj​)pij​

(

X

,

Y

)

f

(

x

,

y

)

\left( X,Y \right)\sim f(x,y)

(X,Y)∼f(x,y);

E

(

Z

)

=

+

+

g

(

x

,

y

)

f

(

x

,

y

)

d

x

d

y

E(Z) = \int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{g(x,y)f(x,y)dxdy}}

E(Z)=∫−∞+∞​∫−∞+∞​g(x,y)f(x,y)dxdy

7.协方差

C

o

v

(

X

,

Y

)

=

E

[

(

X

E

(

X

)

(

Y

E

(

Y

)

)

]

Cov(X,Y) = E\left\lbrack (X - E(X)(Y - E(Y)) \right\rbrack

Cov(X,Y)=E[(X−E(X)(Y−E(Y))]

8.相关系数

ρ

X

Y

=

C

o

v

(

X

,

Y

)

D

(

X

)

D

(

Y

)

\rho_{{XY}} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}

ρXY​=D(X)

​D(Y)

​Cov(X,Y)​,

k

k

k阶原点矩

E

(

X

k

)

E(X^{k})

E(Xk);

k

k

k阶中心矩

E

{

[

X

E

(

X

)

]

k

}

E\left\{ {\lbrack X - E(X)\rbrack}^{k} \right\}

E{[X−E(X)]k}

性质:

(1)

C

o

v

(

X

,

Y

)

=

C

o

v

(

Y

,

X

)

\ Cov(X,Y) = Cov(Y,X)

Cov(X,Y)=Cov(Y,X)

(2)

C

o

v

(

a

X

,

b

Y

)

=

a

b

C

o

v

(

Y

,

X

)

\ Cov(aX,bY) = abCov(Y,X)

Cov(aX,bY)=abCov(Y,X)

(3)

C

o

v

(

X

1

+

X

2

,

Y

)

=

C

o

v

(

X

1

,

Y

)

+

C

o

v

(

X

2

,

Y

)

\ Cov(X_{1} + X_{2},Y) = Cov(X_{1},Y) + Cov(X_{2},Y)

Cov(X1​+X2​,Y)=Cov(X1​,Y)+Cov(X2​,Y)

(4)

ρ

(

X

,

Y

)

1

\ \left| \rho\left( X,Y \right) \right| \leq 1

∣ρ(X,Y)∣≤1

(5)

ρ

(

X

,

Y

)

=

1

P

(

Y

=

a

X

+

b

)

=

1

\ \rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1

ρ(X,Y)=1⇔P(Y=aX+b)=1 ,其中

a

>

0

a > 0

a>0

ρ

(

X

,

Y

)

=

1

P

(

Y

=

a

X

+

b

)

=

1

\rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1

ρ(X,Y)=−1⇔P(Y=aX+b)=1
,其中

a

<

0

a < 0

a<0

9.重要公式与结论

(1)

D

(

X

)

=

E

(

X

2

)

E

2

(

X

)

\ D(X) = E(X^{2}) - E^{2}(X)

D(X)=E(X2)−E2(X)

(2)

C

o

v

(

X

,

Y

)

=

E

(

X

Y

)

E

(

X

)

E

(

Y

)

\ Cov(X,Y) = E(XY) - E(X)E(Y)

Cov(X,Y)=E(XY)−E(X)E(Y)

(3)

ρ

(

X

,

Y

)

1

,

\left| \rho\left( X,Y \right) \right| \leq 1,

∣ρ(X,Y)∣≤1,且

ρ

(

X

,

Y

)

=

1

P

(

Y

=

a

X

+

b

)

=

1

\rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1

ρ(X,Y)=1⇔P(Y=aX+b)=1,其中

a

>

0

a > 0

a>0

ρ

(

X

,

Y

)

=

1

P

(

Y

=

a

X

+

b

)

=

1

\rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1

ρ(X,Y)=−1⇔P(Y=aX+b)=1,其中

a

<

0

a < 0

a<0

(4) 下面5个条件互为充要条件:

ρ

(

X

,

Y

)

=

0

\rho(X,Y) = 0

ρ(X,Y)=0

C

o

v

(

X

,

Y

)

=

0

\Leftrightarrow Cov(X,Y) = 0

⇔Cov(X,Y)=0

E

(

X

,

Y

)

=

E

(

X

)

E

(

Y

)

\Leftrightarrow E(X,Y) = E(X)E(Y)

⇔E(X,Y)=E(X)E(Y)

D

(

X

+

Y

)

=

D

(

X

)

+

D

(

Y

)

\Leftrightarrow D(X + Y) = D(X) + D(Y)

⇔D(X+Y)=D(X)+D(Y)

D

(

X

Y

)

=

D

(

X

)

+

D

(

Y

)

\Leftrightarrow D(X - Y) = D(X) + D(Y)

⇔D(X−Y)=D(X)+D(Y)

注:

X

X

X与

Y

Y

Y独立为上述5个条件中任何一个成立的充分条件,但非必要条件。

数理统计的基本概念

1.基本概念

总体:研究对象的全体,它是一个随机变量,用

X

X

X表示。

个体:组成总体的每个基本元素。

简单随机样本:来自总体

X

X

X的

n

n

n个相互独立且与总体同分布的随机变量

X

1

,

X

2


,

X

n

X_{1},X_{2}\cdots,X_{n}

X1​,X2​⋯,Xn​,称为容量为

n

n

n的简单随机样本,简称样本。

统计量:设

X

1

,

X

2


,

X

n

,

X_{1},X_{2}\cdots,X_{n},

X1​,X2​⋯,Xn​,是来自总体

X

X

X的一个样本,

g

(

X

1

,

X

2


,

X

n

)

g(X_{1},X_{2}\cdots,X_{n})

g(X1​,X2​⋯,Xn​))是样本的连续函数,且

g

(

)

g()

g()中不含任何未知参数,则称

g

(

X

1

,

X

2


,

X

n

)

g(X_{1},X_{2}\cdots,X_{n})

g(X1​,X2​⋯,Xn​)为统计量。

样本均值:

X

=

1

n

i

=

1

n

X

i

\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}

X=n1​∑i=1n​Xi​

样本方差:

S

2

=

1

n

1

i

=

1

n

(

X

i

X

)

2

S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{2}

S2=n−11​∑i=1n​(Xi​−X)2

样本矩:样本

k

k

k阶原点矩:

A

k

=

1

n

i

=

1

n

X

i

k

,

k

=

1

,

2

,

A_{k} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}^{k},k = 1,2,\cdots

Ak​=n1​∑i=1n​Xik​,k=1,2,⋯

样本

k

k

k阶中心矩:

B

k

=

1

n

i

=

1

n

(

X

i

X

)

k

,

k

=

1

,

2

,

B_{k} = \frac{1}{n}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{k},k = 1,2,\cdots

Bk​=n1​∑i=1n​(Xi​−X)k,k=1,2,⋯

2.分布

χ

2

\chi^{2}

χ2分布:

χ

2

=

X

1

2

+

X

2

2

+

+

X

n

2

χ

2

(

n

)

\chi^{2} = X_{1}^{2} + X_{2}^{2} + \cdots + X_{n}^{2}\sim\chi^{2}(n)

χ2=X12​+X22​+⋯+Xn2​∼χ2(n),其中

X

1

,

X

2


,

X

n

,

X_{1},X_{2}\cdots,X_{n},

X1​,X2​⋯,Xn​,相互独立,且同服从

N

(

0

,

1

)

N(0,1)

N(0,1)

t

t

t分布:

T

=

X

Y

/

n

t

(

n

)

T = \frac{X}{\sqrt{Y/n}}\sim t(n)

T=Y/n

​X​∼t(n) ,其中

X

N

(

0

,

1

)

,

Y

χ

2

(

n

)

,

X\sim N\left( 0,1 \right),Y\sim\chi^{2}(n),

X∼N(0,1),Y∼χ2(n),且

X

X

X,

Y

Y

Y 相互独立。

F

F

F分布:

F

=

X

/

n

1

Y

/

n

2

F

(

n

1

,

n

2

)

F = \frac{X/n_{1}}{Y/n_{2}}\sim F(n_{1},n_{2})

F=Y/n2​X/n1​​∼F(n1​,n2​),其中

X

χ

2

(

n

1

)

,

Y

χ

2

(

n

2

)

,

X\sim\chi^{2}\left( n_{1} \right),Y\sim\chi^{2}(n_{2}),

X∼χ2(n1​),Y∼χ2(n2​),且

X

X

X,

Y

Y

Y相互独立。

分位数:若

P

(

X

x

α

)

=

α

,

P(X \leq x_{\alpha}) = \alpha,

P(X≤xα​)=α,则称

x

α

x_{\alpha}

xα​为

X

X

X的

α

\alpha

α分位数

3.正态总体的常用样本分布

(1) 设

X

1

,

X

2


,

X

n

X_{1},X_{2}\cdots,X_{n}

X1​,X2​⋯,Xn​为来自正态总体

N

(

μ

,

σ

2

)

N(\mu,\sigma^{2})

N(μ,σ2)的样本,

X

=

1

n

i

=

1

n

X

i

,

S

2

=

1

n

1

i

=

1

n

(

X

i

X

)

2

,

\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i},S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2},}

X=n1​∑i=1n​Xi​,S2=n−11​∑i=1n​(Xi​−X)2,则:

  1. X

    N

    (

    μ

    ,

    σ

    2

    n

    )

    \overline{X}\sim N\left( \mu,\frac{\sigma^{2}}{n} \right){\ \ }

    X∼N(μ,nσ2​)  或者

    X

    μ

    σ

    n

    N

    (

    0

    ,

    1

    )

    \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1)

    n

    ​σ​X−μ​∼N(0,1)

  2. (

    n

    1

    )

    S

    2

    σ

    2

    =

    1

    σ

    2

    i

    =

    1

    n

    (

    X

    i

    X

    )

    2

    χ

    2

    (

    n

    1

    )

    \frac{(n - 1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2}\sim\chi^{2}(n - 1)}

    σ2(n−1)S2​=σ21​∑i=1n​(Xi​−X)2∼χ2(n−1)

  3. 1

    σ

    2

    i

    =

    1

    n

    (

    X

    i

    μ

    )

    2

    χ

    2

    (

    n

    )

    \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \mu)}^{2}\sim\chi^{2}(n)}

    σ21​∑i=1n​(Xi​−μ)2∼χ2(n)

4)

X

μ

S

/

n

t

(

n

1

)

{\ \ }\frac{\overline{X} - \mu}{S/\sqrt{n}}\sim t(n - 1)

S/n

​X−μ​∼t(n−1)

4.重要公式与结论

(1) 对于

χ

2

χ

2

(

n

)

\chi^{2}\sim\chi^{2}(n)

χ2∼χ2(n),有

E

(

χ

2

(

n

)

)

=

n

,

D

(

χ

2

(

n

)

)

=

2

n

;

E(\chi^{2}(n)) = n,D(\chi^{2}(n)) = 2n;

E(χ2(n))=n,D(χ2(n))=2n;

(2) 对于

T

t

(

n

)

T\sim t(n)

T∼t(n),有

E

(

T

)

=

0

,

D

(

T

)

=

n

n

2

(

n

>

2

)

E(T) = 0,D(T) = \frac{n}{n - 2}(n > 2)

E(T)=0,D(T)=n−2n​(n>2);

(3) 对于

F

~

F

(

m

,

n

)

F\tilde{\ }F(m,n)

F ~F(m,n),有

1

F

F

(

n

,

m

)

,

F

a

/

2

(

m

,

n

)

=

1

F

1

a

/

2

(

n

,

m

)

;

\frac{1}{F}\sim F(n,m),F_{a/2}(m,n) = \frac{1}{F_{1 - a/2}(n,m)};

F1​∼F(n,m),Fa/2​(m,n)=F1−a/2​(n,m)1​;

(4) 对于任意总体

X

X

X,有

E

(

X

)

=

E

(

X

)

,

E

(

S

2

)

=

D

(

X

)

,

D

(

X

)

=

D

(

X

)

n

E(\overline{X}) = E(X),E(S^{2}) = D(X),D(\overline{X}) = \frac{D(X)}{n}

E(X)=E(X),E(S2)=D(X),D(X)=nD(X)​

pandlepanlde-01-必备数学知识的更多相关文章

  1. 《DirectX 9.0 3D游戏开发编程基础》必备的数学知识 读书笔记

    最近在看游戏导航源码,但是看了几天感觉看不懂.里面全是一些几何运算,以及一些关于3d方面的知识.发现自己缺少3d这方面的知识,正好也想研究一下3d游戏开发的基本原理,于是决定买本书看看了,后来在ope ...

  2. Machine Learning Algorithms Study Notes(6)—遗忘的数学知识

    机器学习中遗忘的数学知识 最大似然估计( Maximum likelihood ) 最大似然估计,也称为最大概似估计,是一种统计方法,它用来求一个样本集的相关概率密度函数的参数.这个方法最早是遗传学家 ...

  3. tensorflow学习笔记(3)前置数学知识

    tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个   b为4* ...

  4. java必备基础知识(一)

    学习的一点建议: 每一门语言的学习都要从基础知识开始,学习是一个过程,"万丈高楼平地起",没有一个好的地基,想必再豪华的高楼大厦终究有一天会倒塌.因此,我们学习知识也要打牢根基,厚 ...

  5. Rightmost Digit(快速幂+数学知识OR位运算) 分类: 数学 2015-07-03 14:56 4人阅读 评论(0) 收藏

    C - Rightmost Digit Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit ...

  6. codeforces#253 D - Andrey and Problem里的数学知识

    这道题是这种,给主人公一堆事件的成功概率,他仅仅想恰好成功一件. 于是,问题来了,他要选择哪些事件去做,才干使他的想法实现的概率最大. 我的第一个想法是枚举,枚举的话我想到用dfs,但是认为太麻烦. ...

  7. Directx11学习笔记【五】 基本的数学知识----向量篇

    本文参考dx11龙书 Chapter1 vector algebra(向量代数) 要想学好游戏编程,扎实的数学知识是尤为重要的,下面将对dx11龙书中有关向量的数学知识做一下总结. 在数学中,几何向量 ...

  8. SSAS系列——【01】准备知识

    原文:SSAS系列--[01]准备知识 关于SQL Server 产品,我从2004年就开始使用了,SQL Server 2K,2K5,2K8,到如今已经准6年了,说来惭愧,这六年来所涉及的内容都是在 ...

  9. SQL点滴17—使用数据库引擎存储过程,系统视图查询,DBA,BI开发人员必备基础知识

    原文:SQL点滴17-使用数据库引擎存储过程,系统视图查询,DBA,BI开发人员必备基础知识 在开发过程中会遇到需要弄清楚这个数据库什么时候建的,这个数据库中有多少表,这个存储过程长的什么样子等等信息 ...

  10. 3D Game Programming withDX11 学习笔记(一) 数学知识总结

    在图形学中,数学是不可或缺的一部分,所以本书最开始的部分就是数学知识的复习.在图形学中,最常用的是矢量和矩阵,所以我根据前面三个章节的数学知识,总结一下数学知识. 一.矢量 数学中的矢量,拥有方向和长 ...

随机推荐

  1. QT网络编程【一】

    1.QUdpSocket头文件无法识别怎么解决? 问题原因:qmake没有添加network的模块.在工程配置文件中添加配置即可. 2.选择c++的socket库还是QUdpSocket? 3.同样的 ...

  2. Vue 使用插件nprogress页面加载进度条

    下载 npm i nprogress 在main.js中引入: import App from './App' import VueRouter from 'vue-router' import ro ...

  3. 更新Vue-cli4与Eslint插件自动保存

    Vue-cli更新 此更新为Vue-cli3更新为4,可使用node来查看本机的安装版本,vue -V,此版本(cli4)需要node v8.9 或更高版本 (推荐 v10 以上),查看node版本可 ...

  4. P2345 [USACO04OPEN] MooFest G

    简单的一个分块处理:优雅的暴力枚举 #include<bits/stdc++.h>using namespace std; typedef long long ll;const int N ...

  5. 使用 netstat 命令监视网络状态

    在linux 系统网络出现问题时可以使用netstat -s 来分析问题 使用 netstat 命令监视网络状态 netstat 命令生成包含网络状态和协议统计信息的显示内容.可以通过表格形式显示 T ...

  6. ANOMALY: use of REX.w is meaningless (default operand size is 64)

    1.打开注册机:win+ R   输入regedit2.找到目录:计算机\HKEY_LOCAL_MACHINE\SOFTWARE\TEC\Ocular.3\agent\config 并添加值3.新增项 ...

  7. 利用Vue技术实现的查询所有和添加功能

    就是根据Vue本身的特性,对之前写过的JSON等进行页面代码的简化. 其中,有俩点,需要明白一下: 在body标签里面,使用div标签,将列表数据包住,并设置一个id,便于vue对其的引用 在使用vu ...

  8. Typora编辑区域空白过大问题

    参考博客:https://blog.csdn.net/m0_55485287/article/details/115207178 在哪个文件编辑? 1.找到使用的主题,打开主题文件夹 2.找到对应的c ...

  9. (3) MasaFramework 入门第三篇,使用MasaFramework

    首先我们需要创建一个MasaFramework模板的项目,项目名称TokenDemo,项目类型如图所示 删除Web/TokenDemo.Admin项目,新建Masa Blazor Pro项目模板 项目 ...

  10. .NET应用系统的国际化-基于Roslyn抽取词条、更新代码

    上篇文章我们介绍了 VUE+.NET应用系统的国际化-多语言词条服务 系统国际化改造整体设计思路如下: 提供一个工具,识别前后端代码中的中文,形成多语言词条,按语言.界面.模块统一管理多有的多语言词条 ...