2023-05-05:给定一个无向、连通的树

树中有 n 个标记为 0...n-1 的节点以及 n-1 条边 。

给定整数 n 和数组 edges ,

edges[i] = [ai, bi]表示树中的节点 ai 和 bi 之间有一条边。

返回长度为 n 的数组 answer ,其中 answer[i] :

树中第 i 个节点与所有其他节点之间的距离之和。

输入: n = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]]。

输出: [8,12,6,10,10,10]。

答案2023-05-05:

思路:

给定一棵无向、连通的树,要求计算每个节点到其他所有节点的距离之和。

可以通过遍历树,对于每个节点分别计算它到其他节点的距离之和。对于每个节点,利用它的子节点信息来更新它到其他节点的距离之和,然后递归地更新它的子节点。最终得到所有节点的距离之和。

具体实现如下:

1.构造图

通过给定的 edges 数组构造无向图。

2.遍历树,计算每个节点到其他节点的距离之和

从根节点开始递归遍历树,对于每个节点,首先初始化它到其他节点的距离之和为 0,然后递归地处理它的子节点。处理完所有子节点之后,计算该节点到其他节点的距离之和,并将该节点的大小(即包括自身在内的节点数)保存下来。

3.递归更新节点到其他节点的距离之和

从根节点开始递归遍历树,对于每个节点,首先计算它到其他节点的距离之和,并将其保存在 ans 数组中。然后递归地处理它的子节点,将它们对应的距离之和更新到 upDistance 中,并计算每个子节点到其他节点的距离之和。

总时间复杂度:O(n)

总空间复杂度:O(n)

go完整代码如下:

package main

import "fmt"

var N int = 30001
var size [30001]int
var distance [30001]int func sumOfDistancesInTree(n int, edges [][]int) []int {
graph := make([][]int, n)
for i := range graph {
graph[i] = []int{}
} for _, edge := range edges {
u := edge[0]
v := edge[1]
graph[u] = append(graph[u], v)
graph[v] = append(graph[v], u)
} collect(0, -1, graph)
ans := make([]int, n)
setAns(0, -1, 0, graph, ans) return ans
} func collect(cur int, father int, graph [][]int) {
size[cur] = 1
distance[cur] = 0 for _, next := range graph[cur] {
if next != father {
collect(next, cur, graph)
distance[cur] += distance[next] + size[next]
size[cur] += size[next]
}
}
} func setAns(cur int, father int, upDistance int, graph [][]int, ans []int) {
ans[cur] = distance[cur] + upDistance for _, next := range graph[cur] {
if next != father {
setAns(
next,
cur,
ans[cur]-distance[next]+size[0]-(size[next]<<1),
graph,
ans,
)
}
}
} func main() {
n := 6
edges := [][]int{{0, 1}, {0, 2}, {2, 3}, {2, 4}, {2, 5}}
result := sumOfDistancesInTree(n, edges)
fmt.Println(result)
}

rust完整代码如下:

const N: usize = 30001;
static mut SIZE: [i32; N] = [0; N];
static mut DISTANCE: [i32; N] = [0; N]; pub fn sum_of_distances_in_tree(n: i32, edges: Vec<Vec<i32>>) -> Vec<i32> {
let mut graph: Vec<Vec<i32>> = vec![vec![]; n as usize];
for edge in edges {
let u = edge[0] as usize;
let v = edge[1] as usize;
graph[u].push(v as i32);
graph[v].push(u as i32);
} unsafe {
collect(0, -1, &graph);
let mut ans: Vec<i32> = vec![0; n as usize];
set_ans(0, -1, 0, &graph, &mut ans);
ans
}
} unsafe fn collect(cur: usize, father: i32, graph: &Vec<Vec<i32>>) {
SIZE[cur] = 1;
DISTANCE[cur] = 0; for next in &graph[cur] {
let next = *next as usize;
if next != father as usize {
collect(next, cur as i32, graph);
DISTANCE[cur] += DISTANCE[next] + SIZE[next];
SIZE[cur] += SIZE[next];
}
}
} fn set_ans(cur: usize, father: i32, up_distance: i32, graph: &Vec<Vec<i32>>, ans: &mut Vec<i32>) {
unsafe {
ans[cur] = DISTANCE[cur] + up_distance; for next in &graph[cur] {
let next = *next as usize;
if next != father as usize {
set_ans(
next,
cur as i32,
ans[cur] - DISTANCE[next] + SIZE[0] - (SIZE[next] << 1),
graph,
ans,
);
}
}
}
} fn main() {
let n = 6;
let edges = vec![vec![0, 1], vec![0, 2], vec![2, 3], vec![2, 4], vec![2, 5]];
let result = sum_of_distances_in_tree(n, edges);
println!("{:?}", result);
}

c完整代码如下:

#include <stdio.h>
#include <stdlib.h> #define N 30001 int size[N];
int distance[N]; void collect(int cur, int father, int** graph, int n);
void setAns(int cur, int father, int upDistance, int** graph, int* ans); int* sumOfDistancesInTree(int n, int edges[][2]) {
int** graph = malloc(n * sizeof(*graph));
for (int i = 0; i < n; i++) {
graph[i] = malloc((n + 1) * sizeof(**graph));
for (int j = 0; j <= n; j++) {
graph[i][j] = -1;
}
}
for (int i = 0; i < n - 1; i++) {
int u = edges[i][0];
int v = edges[i][1];
if (graph[u][0] == -1) {
graph[u][0] = 0;
}
if (graph[v][0] == -1) {
graph[v][0] = 0;
}
int j = 0;
while (graph[u][++j] != -1);
graph[u][j] = v;
j = 0;
while (graph[v][++j] != -1);
graph[v][j] = u;
} collect(0, -1, graph, n);
int* ans = malloc(n * sizeof(int));
setAns(0, -1, 0, graph, ans); for (int i = 0; i < n; i++) {
free(graph[i]);
}
free(graph); return ans;
} void collect(int cur, int father, int** graph, int n) {
size[cur] = 1;
distance[cur] = 0; int j = 1;
while (graph[cur][j] != -1) {
int next = graph[cur][j];
if (next != father) {
collect(next, cur, graph, n);
distance[cur] += distance[next] + size[next];
size[cur] += size[next];
}
j++;
}
} void setAns(int cur, int father, int upDistance, int** graph, int* ans) {
ans[cur] = distance[cur] + upDistance; int j = 1;
while (graph[cur][j] != -1) {
int next = graph[cur][j];
if (next != father) {
setAns(
next,
cur,
ans[cur] - distance[next] + size[0] - (size[next] << 1),
graph,
ans
);
}
j++;
}
} int main() {
int n = 6;
int edges[][2] = { {0, 1}, {0, 2}, {2, 3}, {2, 4}, {2, 5} };
int* result = sumOfDistancesInTree(n, edges); for (int i = 0; i < n; i++) {
printf("%d ", result[i]);
}
printf("\n"); free(result); return 0;
}

c++完整代码如下:

#include <iostream>
#include <vector> //using namespace std; const int N = 30001; static int size[N];
static int distance[N]; void collect(int cur, int father, std::vector<std::vector<int>>& graph);
void setAns(int cur, int father, int upDistance, std::vector<std::vector<int>>& graph, int* ans); int* sumOfDistancesInTree(int n, std::vector<std::vector<int>>& edges) {
std::vector<std::vector<int>> graph(n);
for (auto edge : edges) {
int u = edge[0];
int v = edge[1];
graph[u].push_back(v);
graph[v].push_back(u);
} collect(0, -1, graph);
int* ans = new int[n];
setAns(0, -1, 0, graph, ans); return ans;
} void collect(int cur, int father, std::vector<std::vector<int>>& graph) {
size[cur] = 1;
distance[cur] = 0; for (auto next : graph[cur]) {
if (next != father) {
collect(next, cur, graph);
distance[cur] += distance[next] + size[next];
size[cur] += size[next];
}
}
} void setAns(int cur, int father, int upDistance, std::vector<std::vector<int>>& graph, int* ans) {
int a = N;
ans[cur] = distance[cur] + upDistance; for (auto next : graph[cur]) {
if (next != father) {
setAns(
next,
cur,
ans[cur] - distance[next] + size[0] - (size[next] << 1),
graph,
ans
);
}
}
} int main() {
int n = 6;
std::vector<std::vector<int>> edges = { {0, 1}, {0, 2}, {2, 3}, {2, 4}, {2, 5} };
int* result = sumOfDistancesInTree(n, edges); for (int i = 0; i < n; i++) {
std::cout << result[i] << " ";
}
std::cout << std::endl; delete[] result; return 0;
}

2023-05-05:给定一个无向、连通的树 树中有 n 个标记为 0...n-1 的节点以及 n-1 条边 。 给定整数 n 和数组 edges , edges[i] = [ai, bi]表示树中的的更多相关文章

  1. Two sum(给定一个无重复数组和目标值,查找数组中和为目标值的两个数,并输出其下标)

    示例: nums = [1,2,5,7] target = [6] return [0,2] Python解决方案1: def twoSum(nums, target): ""&q ...

  2. 给定一个数列a1,a2,a3,...,an和m个三元组表示的查询,对于每个查询(i,j,k),输出ai,ai+1,...,aj的升序排列中第k个数。

    给定一个数列a1,a2,a3,...,an和m个三元组表示的查询,对于每个查询(i,j,k),输出ai,ai+1,...,aj的升序排列中第k个数. #include <iostream> ...

  3. 给定一个二叉搜索树(BST),找到树中第 K 小的节点

    问题:给定一个二叉搜索树(BST),找到树中第 K 小的节点. 出题人:阿里巴巴出题专家:文景/阿里云 CDN 资深技术专家. 考察点: 1. 基础数据结构的理解和编码能力 2.  递归使用 参考答案 ...

  4. 给定一个十进制的正整数,写下从1开始,到N的所有整数,然后数一下其中出现“1”的个数。

    一.题目: n给定一个十进制的正整数,写下从1开始,到N的所有整数,然后数一下其中出现“1”的个数. n要求: n写一个函数 f(N) ,返回1 到 N 之间出现的 “1”的个数.例如 f(12)  ...

  5. Gym 101064 D Black Hills golden jewels 【二分套二分/给定一个序列,从序列中任意取两个数形成一个和,两个数不可相同,要求求出第k小的组合】

    D. Black Hills golden jewels time limit per test 2 seconds memory limit per test 256 megabytes input ...

  6. 【leetcode-03】给定一个字符串,请你找出其中不含有重复字符的最长子串的长度

    开个新坑,leetcode上面做题目.下面是题目描述: <!-- 给定一个字符串,请你找出其中不含有重复字符的最长子串的长度. 示例 1: 输入: "abcabcbb" 输出 ...

  7. AI+BI的未来

    ​​ 术语与缩写解释 缩写.术语 解 释 BI 商业智能(Business Intelligence,简称:BI),又称商业智慧或商务智能,指用现代数据仓库技术.线上分析处理技术.数据挖掘和数据展现技 ...

  8. 2021.08.05 P2168 荷马史诗(哈夫曼树模板)

    2021.08.05 P2168 荷马史诗(哈夫曼树模板) [P2168 NOI2015] 荷马史诗 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.k叉哈夫曼树如果子结 ...

  9. 算法:Manacher,给定一个字符串str,返回str中最长回文子串的长度。

    [题目] 给定一个字符串str,返回str中最长回文子串的长度 [举例] str="123", 1 str="abc1234321ab" 7 [暴力破解] 从左 ...

  10. 给定一个double类型的数组arr,其中的元素可正可负可0,返回子数组累乘的最大乘积。例如arr=[-2.5,4,0,3,0.5,8,-1],子数组[3,0.5,8]累乘可以获得最大的乘积12,所以返回12。

    分析,是一个dp的题目, 设f[i]表示以i为结尾的最大值,g[i]表示以i结尾的最小值,那么 f[i+1] = max{f[i]*arr[i+1], g[i]*arr[i+1],arr[i+1]} ...

随机推荐

  1. scrcpy投屏软件

    Android很好用得scrcpy 投屏软件: 下载传送门:https://github.com/Genymobile/scrcpy/releases 1.下载解压包后,解压至自己得电脑目录,并复制目 ...

  2. TP5.1模板循环标签

    第一种volist name=assign中的变量名 id=数组中的key offset=开始循环的位置 length=步长 {volist name='list' id='vo' offset='0 ...

  3. FileZilla连不上阿里云ECS服务器

    (1)阿里云的公网IP (2)端口是22,网上很多介绍是21(当时也没去注意,后来发现一直连接不上去,后来才发现) 在FileZilla 中: - 用sftp协议连接Server ,需要用port 2 ...

  4. SpringBoot之独立quartz数据源

    背景: 之前项目里面把quartz相关的表跟业务数据库(涉及系统业务的库)融合在一起,后面需要把quartz单独拎出来放在一个数据库里面, 旧的数据源配置(application.properties ...

  5. 【Mybatis-Plus】使用updateById()、update()将字段更新为null或者空

    参考 https://blog.csdn.net/weixin_41544866/article/details/119738605

  6. spring aop切面说明

    execution:处理Join Point的类型,例如call.execution (* android.app.Activity.on**(..)):这个是最重要的表达式,第一个*表示返回值,*表 ...

  7. Linux & 标准C语言学习 <DAY12_2>

    一.堆内存     1.什么是堆内存         是进程的一个内存段(text.data.bss.stack.heap)         由程序员手动管理         特点是足够大,缺点是使用 ...

  8. Yolov5——训练目标检测模型

    项目的克隆 打开yolov5官网(GitHub - ultralytics/yolov5 at v5.0),下载yolov5的项目: 环境的安装(免额外安装CUDA和cudnn) 打开anaconda ...

  9. mybatis-spring注解MapperScan的原理

    很多开发者应该都知道,我们只使用@MapperScan这个注解就可以把我们写的Mybatis的Mapper接口加载到Spring的容器中,不需要对每个Mapper接口加@Mapper这个注解了,加快了 ...

  10. Django笔记十二之defer、only指定返回字段

    本篇笔记为Django笔记系列之十二,首发于公号[Django笔记] 本篇笔记将介绍查询中的 defer 和 only 两个函数的用法,笔记目录如下: defer only 1.defer defer ...