摘要:在做基于Ascend CL模型推理时,通常使用的有OpenCV、AIPP、DVPP这三种方式,或者是它们的混合方式,本文比较了这三种方式的特点,并以Resnet50的pytorch模型为例,结合训练营提供的sample,说明了分别是如何实现预处理的。

本文分享自华为云社区《【2023 · CANN训练营第一季】——模型推理时数据预处理方法及归一化参数计算》,作者: dayao。

前言:

对待推理图片执行模型推理前,需要对图片进行预处理,以满足模型的输入要求。我们可以通过阅读模型训练代码,查看预处理的方法。在做基于Ascend CL模型推理时,通常使用的有OpenCV、AIPP、DVPP这三种方式,或者是它们的混合方式,本文比较了这三种方式的特点,并以Resnet50的pytorch模型为例,结合训练营提供的sample,说明了分别是如何实现预处理的。本文还介绍了AIPP做减均值/乘系数的参数是如何计算的。

一、查找模型训练时的预处理方式

这一步对我这样的新手有些难度,在训练营可以直接问授课老师,或者是无所不晓的老班(帅高),亦或是无所不能的小助手

以Resnet50的pytorch模型为例,这里模型需要的数据预处理方法,再讲述两种查找方法。

Resnet50模型,需要对待推理图片的数据预处理是:缩放到224*224;以RGB的顺序存放;对像素/255.0,变换到[0.0,1.0]范围内;再按三个通道,分别做减均值,乘系数的运算,三个通道的均值是[0.485, 0.456, 0.406],对应系数分别是:[0.229, 0.224, 0.225]。

1、方法一:在昇腾官方的modelzoo去查。https://gitee.com/ascend/modelzoo

然后选择用于训练的模型PyTorch目录

在搜索框中,输入Resnet50,找到对应的模型文件

然后在modelarts / train_start.py里查到的处理代码如下:

2、方法二:到pytorch官网去查

https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet50.html#torchvision.models.resnet50

二、数据预处理的方式

确定好了输入图片需要做哪些预处理,接下来就需要选择合适的实现方式。Ascend CL常用的有三种:Opencv、AIPP、DVPP。这三种方式的特点如下表所示:

本次训练营,勤劳的小虎老师贴心的给大家准备了三种方式,供大家学习和掌握。代码在:https://gitee.com/ascend/samples/tree/master/inference/modelInference。分别是:纯open CV;CV+AIPP;DVPP+AIPP。如下表所示:

1、CV方式:sampleResnetQuickStart

2、cv+AIPP方式:sampleResnetAIPP.cpp​

3、DVPP+AIPP方式:sampleResnetDVPP

三、减均值/乘系数 用AIPP实现的计算

Pytorch官方的计算方法:

1、将图像数据调整到[0.0, 1.0]之间,相当于(/255.0)——torchvision.transforms.ToTensor

2、将数据x = (x - mean(x))/std(x)——torchvision.transforms.Normalize

用数学公式表达:

pixel_out_chx(i)=[pixel_in_chx(i)/255 - mean_i]/std_i

=[pixel_in_ch(i) - mean_i*255]/(255*std_i) (公式一)

注:pixel_out_chx(i):计算输出值;

pixel_in_chx(i):原始像素值,取值范围[0, 255];

mean_i:均值,3个颜色通道分别取:[0.485, 0.456, 0.406]

std_i:系数,3个颜色通道分别取:[0.229, 0.224, 0.225]

AIPP减均值乘系数的计算公式:

pixel_out_chx(i)=[pixel_in_chx(i)-mean_chn_i-min_chn_i]*var_reci_chn (公式二)

注:pixel_out_chx(i):计算输出值;

pixel_in_chx(i):原始像素值,取值范围[0, 255];

mean_chn_i表示每个通道的均值;

min_chn_i表示每个通道的最小值;

var_reci_chn表示每个通道方差的倒数

mean_chn_i和min_chn_i可以任意使用1个,另一个为0。令mean_chn_i=0,

公式一和公式二的像素经过计算后的值相等,所以公式的右边也相等,计算可得出:

min_chn_i = mean_i*255

var_reci_chn = 1/(255*std_i)

三个通道的计算如下:

点击关注,第一时间了解华为云新鲜技术~

CANN训练:模型推理时数据预处理方法及归一化参数计算的更多相关文章

  1. python中常用的九种数据预处理方法分享

    Spyder   Ctrl + 4/5: 块注释/块反注释 本文总结的是我们大家在python中常见的数据预处理方法,以下通过sklearn的preprocessing模块来介绍; 1. 标准化(St ...

  2. 1、JVM 内存模型+运行时数据区+JVM参数

    JMM(内存模型)  1.’主内存+每个线程有自己的内存 JVM运行时数据区 包含:1.程序计算器(每个线程自带):2.JAVA-STACK(每个线程自带):3.本地方法stack:4.堆:5.方法区 ...

  3. jvm内存模型(运行时数据区)

    运行时数据区(runtime data area) jvm定义了几个运行时数据区,这些运行时数据区存储的数据,供开发者的应用或者jvm本身使用.按线程共享与否可以分为线程间共享和线程间独立. 线程间独 ...

  4. JVM运行时数据区--方法区

    运行时数据区结构图(温习): 堆.栈.方法区的交互关系 方法区的理解 方法区(Method Area)与Java堆一样,是各个线程共享的内存区域 方法区在JVM启动时就会被创建,并且它的实际的物理内存 ...

  5. JVM详解(五)——运行时数据区-方法区

    一.概述 1.介绍 <Java虚拟机规范>中明确说明:尽管所有的方法区在逻辑上属于堆的一部分,但一些简单的实现可能不会选择去进行垃圾收集或者进行压缩.但对于HotSpot JVM而言,方法 ...

  6. Python数据预处理(sklearn.preprocessing)—归一化(MinMaxScaler),标准化(StandardScaler),正则化(Normalizer, normalize)

      关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常 ...

  7. sklearn中常用数据预处理方法

    1. 标准化(Standardization or Mean Removal and Variance Scaling) 变换后各维特征有0均值,单位方差.也叫z-score规范化(零均值规范化).计 ...

  8. 神经网络中的数据预处理方法 Data Preprocessing

    0.Principal component analysis (PCA) Principal component analysis (PCA) is a statistical procedure t ...

  9. sklearn中的数据预处理----good!! 标准化 归一化 在何时使用

    RESCALING attribute data to values to scale the range in [0, 1] or [−1, 1] is useful for the optimiz ...

  10. 编程写一个方法时,注意方法中传参数的数量最好不要超过5个,超过5个怎么办?可以用struct或class,或一个字典类

    图  1 一.从图1发现了什么问题呢? 答案:1.参数传的的太多了:2.另外注释也没写好. 说明:一个方法中,传参数的数量最好不要超过5个. 应该采用:struct或class,或一个字典类都行.其中 ...

随机推荐

  1. nginx服务器下的TP5框架的虚拟域名配置

    server { listen 80; default_type 'text/html'; charset utf-8; server_name www.xxx.com; root /usr/loca ...

  2. to_csv()导入数据乱码问题

    制定编码: utf_8 -->utf_8_sig 修改后代码code: df.to_csv('data3.csv',index=False,encoding='utf_8_sig')

  3. linux-vi/vim常用操作键

    命令模式: :w 将编辑的数据写入硬盘档案中(常用) :w! 若文件属性为『只读』时,强制写入该档案.不过,到底能不能写入, 还是跟你对该档案的档案权限有关啊! :q 离开 vi (常用) :q! 若 ...

  4. nginx二进制安装脚本

    #!/bin/bash NGINX_FILE=nginx-1.22.0#NGINX_FILE=nginx-1.20.2#NGINX_FILE=nginx-1.18.0NGINX_URL=http:// ...

  5. C++ PTA 小于m的最大的10个素数

    7-5 小于m的最大的10个素数 (15分) 给定一个整数m(50<m<20000),找出小于m的最大的10个素数. 输入格式: 输入在一行中给出一个正整数m(50<m<200 ...

  6. 正则爬取'豆瓣之乘风破浪的姐姐'的并存入excel文档

    import requests import re import pandas as pd def parse_page(url): headers = { 'User-Agent':'Mozilla ...

  7. springboot项目启动报错:找不到或无法加载主类 com....

    springboot项目报错 找不到或无法加载主类 com.... 1.如果是导入的别人的项目 首先要配置好JDK 和 MAVEN 然后点击右侧栏的maven图标 --->点击clean(清除掉 ...

  8. The first blog

    这是一只爱碎觉的汪的第一篇博客. 下面就来简单介绍一下自己吧,爱好广泛,尤其热爱钢琴和运动,喜欢每个按键在手指间跳动的感觉,喜欢一个个音符连起来奏响的一曲曲优美的音乐,也喜欢运动后大汗淋漓的畅快感.肯 ...

  9. Cookie 设置 添加 删除 修改

    置cookie 如果设置domin    后面的域名前面就会有.  <script>//设置cookiefunction setCookie(cname, cvalue, exdays)  ...

  10. STL妙用总结(持续更新)

    1.  map 自带排序功能.从小到大!把一堆东西按照要排序的键放在map里可以当二叉排序树使用.插入和检索都不错