CF1083C Max Mex 线段树
题面
题解
首先我们考虑,如果一个数x是某条路径上的mex,那么这个数要满足什么条件?
- 1 ~ x - 1的数都必须出现过.
- x必须没出现过。
现在我们要最大化x,那么也就意味着我们要找到一条路径使得这个都出现过的前缀尽可能长。
第二个条件可以忽略,因为如果第1个条件满足,而第2个条件却不满足,意味着我们可以把x至少扩大1位,因为要求最大值,所以扩大肯定最优,因此我们肯定会扩大到不能扩大为止。
由此我们可以发现,x是满足可二分性的。
考虑在线段树上维护这个问题,区间\([l, r]\)表示值域区间为\([l, r]\)的点全都连接在一起形成的一条路径。
如果有这条路径,那么就存下左右端点,否则就不存。
那么考虑如何合并2个区间\([l, mid], [mid + 1, r]\)。
从4个端点中任取2个作为新的端点,如果另外2个端点均在这2个端点构成的路径上,那么我们就找到了一条新路径满足值域属于\([l, r]\)的点全在路径上。
这样做的正确性(最优性)依赖于权值两两不同,因此我们的选择是唯一的,因此肯定是最优选择。
有一个很简洁的式子可以用于判断一个点是否在某条路径上:
如果\(x\)在链\((u, v)\)上,设\(LCA(u, v) = y\)那么有:
\]
于是维护好之后剩下的事情就是在线段树上查询(二分)了。
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define LL long long
#define AC 201000
#define ac 802000
#define h(x) ((x) << 1)
int n, m;
int Head[AC], date[AC], Next[AC], tot;
int v[AC], fa[AC], s[AC];//s[i]表示权值为i的是哪个,只需要在最开始用就可以了
inline int read()
{
int x = 0;char c = getchar();
while(c > '9' || c < '0') c = getchar();
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x;
}
inline void add(int f, int w)
{date[++ tot] = w, Next[tot] = Head[f], Head[f] = tot;}
#define cal(x, y) ((dep[x] < dep[y]) ? x : y)//返回x, y中dep最小的那个
#define maxn 401000
int st[maxn][20], ss[maxn], dep[AC], t[maxn], p[maxn], first[AC], top;
struct ST_form{
void dfs(int x)//求遍历的数组 + dep
{
ss[++ top] = x, first[x] = top;
for(R i = Head[x]; i; i = Next[i])
{
int now = date[i];
dep[now] = dep[x] + 1, dfs(now), ss[++ top] = x;//返回的时候也要加
}
}
void build()
{
dep[1] = 1, dfs(1);
int tmp = 1, cnt = 0;
for(R i = 1; i <= top; i ++)
{
if(i == (tmp << 1)) tmp <<= 1, ++ cnt;
p[i] = tmp, t[i] = cnt;
}
for(R i = 1; i <= top; i ++) st[i][0] = ss[i];
tmp = 1;
for(R i = 1; i <= 18; i ++)
{
for(R j = 1; j <= top; j ++)
st[j][i] = cal(st[j][i - 1], st[min(j + tmp, top)][i - 1]);
tmp <<= 1;
}
}
inline int LCA(int x, int y)//st表求LCA
{
int l = first[x], r = first[y];
if(l > r) swap(l, r);//不一定按顺序的
int len = r - l + 1;
return cal(st[l][t[len]], st[r - p[len] + 1][t[len]]);
}
}T;
struct node{
int lx, rx;
}tree[ac], go;
#define update(x) tree[x] = merge(tree[x << 1], tree[(x << 1) + 1]);
struct seg_tree{
bool check(int x, int u, int v)//检查x是否在路径(u, v)上
{
int y = T.LCA(u, v);
return ((T.LCA(u, x) == x || T.LCA(v, x) == x) && T.LCA(x, y) == y);
}
inline node merge(node ll, node rr)
{
if(!ll.lx || !rr.lx) return (node){0, 0};
int s[5] = {ll.lx, ll.rx, rr.lx, rr.rx};
for(R i = 0; i < 4; i ++)
for(R j = i + 1; j < 4; j ++)
{
bool flag = true;
if(s[i] == s[j]) continue;
for(R k = 0; k < 4; k ++)
if(k != i && k != j && !check(s[k], s[i], s[j])) {flag = false; break;}
if(flag) return (node){s[i], s[j]};
}
return (node){0, 0};
}
void build(int x, int l, int r)
{
if(l == r) {tree[x].lx = tree[x].rx = s[l]; return ;}
int mid = (l + r) >> 1;
build(h(x), l, mid), build(h(x) + 1, mid + 1, r);
update(x);
}
void change(int x, int l, int r, int w)
{
if(l == r) {tree[x].lx = tree[x].rx = w; return ;}
int mid = (l + r) >> 1;
if(v[w] <= mid) change(h(x), l, mid, w);
else change(h(x) + 1, mid + 1, r, w);
update(x);
}
int find(int x, int l, int r)
{
int mid = (l + r) >> 1;
if(l == r)
{
node tmp = go.lx ? merge(go, tree[x]) : tree[x];
if(tmp.lx) {go = tmp; return 1;}
return 0;
}
if(!tree[h(x)].lx) return find(h(x), l, mid);
else
{
node tmp = go.lx ? merge(go, tree[h(x)]) : tree[h(x)];
if(!tmp.lx) return find(h(x), l, mid);
else {go = tmp; return mid - l + 1 + find(h(x) + 1, mid + 1, r);}
}
}
}T1;
void pre()
{
n = read();
for(R i = 1; i <= n; i ++) v[i] = read() + 1, s[v[i]] = i;
for(R i = 2; i <= n; i ++) fa[i] = read(), add(fa[i], i);
}
void work()
{
m = read();
for(R i = 1; i <= m; i ++)
{
int opt = read();
if(opt == 1)
{
int x = read(), y = read();
swap(v[x], v[y]);
T1.change(1, 1, n, x), T1.change(1, 1, n, y);
}
else go.lx = go.rx = 0, printf("%d\n", T1.find(1, 1, n));//因为向右平移了1,所以要移回来,+ 1 - 1就恰好抵消了
}
}
int main()
{
// freopen("in.in", "r", stdin);
pre();
T.build();
T1.build(1, 1, n);
work();
// fclose(stdin);
return 0;
}
CF1083C Max Mex 线段树的更多相关文章
- Codeforces 1083C Max Mex [线段树]
洛谷 Codeforces 思路 很容易发现答案满足单调性,可以二分答案. 接下来询问就转换成判断前缀点集是否能组成一条链. 我最初的想法:找到点集的直径,判断直径是否覆盖了所有点,需要用到树套树,复 ...
- HDU-4747 Mex 线段树
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4747 题意:求一个数列中,所有mex(L,R)的和. 注意到mex是单调不降的,那么首先预处理出mex ...
- [置顶] hdu4747 Mex 线段树
题意:给你一个序列,让你求出对于所有区间<i, j>的mex和,mex表示该区间没有出现过的最小的整数. 思路:从时限和点数就可以看出是线段树,并且我们可以枚举左端点i, 然后求出所有左端 ...
- hdu 4747 mex 线段树+思维
http://acm.hdu.edu.cn/showproblem.php?pid=4747 题意: 我们定义mex(l,r)表示一个序列a[l]....a[r]中没有出现过得最小的非负整数, 然后我 ...
- [CF1083C]Max Mex
题目大意:有一棵$n(n\leqslant2\times10^5)$个点的树,每个点有点权,所有的点权构成了$0\sim n-1$的排列.$q(q\leqslant2\times10^5)$次操作,操 ...
- BZOJ.3585.mex(线段树)
题目链接 题意:多次求区间\(mex\). 考虑\([1,i]\)的\(mex[i]\),显然是单调的 而对于\([l,r]\)与\([l+1,r]\),如果\(nxt[a[l]]>r\),那么 ...
- bzoj 3585 mex - 线段树 - 分块 - 莫队算法
Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问 ...
- 【bzoj3585】mex 线段树 mex,sg
Description 有一个长度为n的数组{a1,a2,…,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问l, ...
- hdu 4747 Mex( 线段树? 不,区间处理就行(dp?))
Mex Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total Submis ...
随机推荐
- Codewars笔记
说明:以下内容均来自codewars网站,列举的试题我都做过且通过,并以此记录来学习python. 1,需求:将大小写互相转换,非字母的字符保留 我的代码: def to_alternating_ ...
- c语言数字图像处理(四):灰度变换
灰度变换 灰度变换函数 s = T(r) 其中r为输入图像在(x, y)点处的灰度值,s为输出图像在(x, y)点处的灰度值 灰度变换的作用 上图所示的两幅T(s)函数的图像曲线,第一幅图可以增强 ...
- Unity3D — — Inspector面板编辑
转载官方文档,暂未深入研究 PropertyDrawer
- Netty源码分析第3章(客户端接入流程)---->第2节: 处理接入事件之handle的创建
Netty源码分析第三章: 客户端接入流程 第二节: 处理接入事件之handle的创建 上一小节我们剖析完成了与channel绑定的ChannelConfig初始化相关的流程, 这一小节继续剖析客户端 ...
- 如何快速搭建yum源
yum命令能够从指定的服务器自动下载rpm包并安装,它最强大的地方就是可以自动处理软件包的依赖关系,能够一次安装所有依赖的关系包.下面将通过虚拟机平台介绍两种快速搭建yum源的方法: 一.有网络的情况 ...
- vue+webpack前端开发项目的安装方法
安装前,需要进行node.npm检测,查看是否已有安装node.npm环境: 操作方法:Windows+R 调出运行框,输入cmd 调出命令框:分别输入node -v 回车(查看node版本) npm ...
- jumpserver安装与部署
1.简介 Jumpserver 是一款由Python编写开源的跳板机(堡垒机)系统,实现了跳板机应有的功能.基于ssh协议来管理,客户端无需安装agent.特点: 完全开源,GPL授权 Pyth ...
- 使用git-premit时的问题
package.json 相关配置如下 { "scripts": { "lint": "eslint pages/* component/* --fi ...
- Python20-Day05
一.模块与包 1.模块 什么是模块? 在python中,模块可以分为四个通用类别: 1. 使用python编写的.py文件 2. 已经被编译为共享库或DLL的c或者c++扩展 3. 把一系列模块组织到 ...
- iOS 静态库 与 demo 联合调试
在修复bug或者开发静态库需要调试,这个时候需要把工程中的.framework和资源bundle文件都替换为静态库原工程文件 首先需要确保静态库工程文件没有打开,Xcode不允许在两个地方同时打开同一 ...