Luogu 3810 & BZOJ 3262 陌上花开/三维偏序 | CDQ分治
Luogu 3810 & BZOJ 3263 陌上花开/三维偏序 | CDQ分治
题面
\(n\)个元素,每个元素有三个值:\(a_i\), \(b_i\) 和 \(c_i\)。定义一个元素的偏序是三个值都小于等于它的值的元素的个数,对于\([0, n)\)的每个值\(i\),求偏序为\(i\)的元素个数。
题解
这道题我使用的是CDQ分治。
这道题有三个维度,每个维度都要对应一个数据结构/算法,来逐个击破。
首先,按照\(a\)从小到大把所有元素排序,保证\(a\)从小到大。
然后,对于第二维进行分治:首先对mid两边的子区间分别处理,然后处理左边子区间内的元素对有边子区间内元素的贡献。
处理跨mid贡献,我们需要使用树状数组。把左右两个子区间分别按照\(b\)排序,对于右边的每个元素,先把左边所有b比它小、尚未加入树状数组的元素加入树状数组,即树状数组中左区间当前元素的\(c\)的对应位值上的值增加;然后计算右区间当前元素的\(c\)的对应位置的前缀和,把右区间当前元素的答案加上这个前缀和。
需要注意:
数据中有些元素是完全相同的,做的时候要去重,把原来的相同元素的个数当做新的唯一元素的权值。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
#define space putchar(' ')
#define enter putchar('\n')
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 2000005;
int n, k, tot, tr[N], ans[N];
struct mem{
int a, b, c, cnt, sum;
bool operator < (const mem &B) const{
if(a != B.a) return a < B.a;
if(b != B.b) return b < B.b;
return c < B.c;
}
bool operator == (const mem &B) const{
return a == B.a && b == B.b && c == B.c;
}
} m[N], t[N];
bool cmp(const mem &A, const mem &B){
return A.b < B.b;
}
void add(int p, int x){
while(p <= k) tr[p] += x, p += p & -p;
}
int ask(int p){
int ret = 0;
while(p) ret += tr[p], p -= p & -p;
return ret;
}
void solve(int l, int r){
if(l == r) return;
int mid = (l + r) >> 1;
solve(l, mid), solve(mid + 1, r);
sort(m + l, m + mid + 1, cmp);
sort(m + mid + 1, m + r + 1, cmp);
int pl = l, pr = mid + 1;
while(pr <= r){
while(pl <= mid && m[pl].b <= m[pr].b)
add(m[pl].c, m[pl].cnt), pl++;
m[pr].sum += ask(m[pr].c);
pr++;
}
for(int i = l; i < pl; i++)
add(m[i].c, -m[i].cnt);
}
int main(){
read(n), read(k), tot = n;
for(int i = 1, a, b, c; i <= n; i++)
read(a), read(b), read(c), t[i] = (mem){a, b, c, 0, 0};
sort(t + 1, t + n + 1);
n = 0;
for(int i = 1; i <= tot; i++){
if(i == 1 || !(t[i] == t[i - 1]))
m[++n] = t[i];
m[n].cnt++;
}
solve(1, n);
for(int i = 1; i <= n; i++)
ans[m[i].sum + m[i].cnt - 1] += m[i].cnt;
for(int i = 0; i < tot; i++)
write(ans[i]), enter;
return 0;
}
Luogu 3810 & BZOJ 3262 陌上花开/三维偏序 | CDQ分治的更多相关文章
- BZOJ 3262 陌上花开 (三维偏序CDQ+树状数组)
题目大意: 题面传送门 三维偏序裸题 首先,把三元组关于$a_{i}$排序 然后开始$CDQ$分治,回溯后按$b_{i}$排序 现在要处理左侧对右侧的影响了,显然现在左侧三元组的$a_{i}$都小于等 ...
- BZOJ3262 陌上花开 —— 三维偏序 CDQ分治
题目链接:https://vjudge.net/problem/HYSBZ-3262 3262: 陌上花开 Time Limit: 20 Sec Memory Limit: 256 MBSubmit ...
- bzoj3262: 陌上花开 三维偏序cdq分治
三维偏序裸题,cdq分治时,左侧的x一定比右侧x小,然后分别按y排序,对于左侧元素按y大小把z依次插入到树状数组里,其中维护每个左侧元素对右侧元素的贡献,在bit查询即可 /************* ...
- [bzoj] 3263 陌上花开 洛谷 P3810 三维偏序|| CDQ分治 && CDQ分治讲解
原题 定义一个点比另一个点大为当且仅当这个点的三个值分别大于等于另一个点的三个值.每比一个点大就为加一等级,求每个等级的点的数量. 显然的三维偏序问题,CDQ的板子题. CDQ分治: CDQ分治是一种 ...
- BZOJ 2141 排队 (三维偏序CDQ+树状数组)
题目大意:略 洛谷传送门 和 [CQOI2015]动态逆序对 这道题一样的思路 一开始的序列视为$n$次插入操作 把每次交换操作看成四次操作,删除$x$,删除$y$,加入$x$,加入$y$ 把每次操作 ...
- BZOJ 3295:[Cqoi2011]动态逆序对(三维偏序 CDQ分治+树状数组)
http://www.lydsy.com/JudgeOnline/problem.php?id=3295 题意:简单明了. 思路:终于好像有点明白CDQ分治处理三维偏序了.把删除操作看作是插入操作,那 ...
- 三维偏序[cdq分治学习笔记]
三维偏序 就是让第一维有序 然后归并+树状数组求两维 cdq+cdq不会 告辞 #include <bits/stdc++.h> // #define int long long #def ...
- BZOJ3262/Luogu3810 陌上花开 (三维偏序,CDQ)
一个下午的光阴之死,凶手是细节与手残. 致命的一枪:BIT存权值时: for(; x <= maxx; x += x&-x) t[x] += w; //for(; x <= n; ...
- 洛谷P3810-陌上开花(三维偏序, CDQ, 树状数组)
链接: https://www.luogu.org/problem/P3810#submit 题意: 一个元素三个属性, x, y, z, 给定求f(b) = {ax <= bx, ay < ...
随机推荐
- Docker持久化存储与数据共享
一.Docker持久化数据的方案 基于本地文件系统的Volume:可以在执行docker create或docker run时,通过-v参数将主机的目录作为容器的数据卷.这部分功能便是基于本地文件系统 ...
- ssm-maven 所需添加的所有映射
<dependencies> <!--Mybatis依赖--> <dependency> <groupId>org.mybatis</groupI ...
- webpack入门指南-step03
一.webpack 的使用 webpack简单点来说就就是一个配置文件,所有的魔力都是在这一个文件中发生的. 这个配置文件主要分为三大块 entry 入口文件 让webpack用哪个文件作为项目的入口 ...
- 个人作业Week7
1.在做个人项目的时候,由于很久都没有写这么大的程序了,对程序的感觉还没有恢复,因此,没能完全完成个人项目.现在回去看个人项目的代码(针对完成的代码来看),完全就是一个大泥球,代码的结构性太差,基本上 ...
- Scrum Meeting 11.07
成员 今日任务 明日计划 用时 徐越 赵庶宏 薄霖 卞忠昊 JOSN数据解析 WebView和JavaScript交互基础 3h 武鑫 设计界面:独立完成一些简 ...
- [BUAA_SE_2017]结对项目-数独程序扩展
结对项目-数独程序扩展 Runnable on x64 Only sudoku17.txt 须放置在可执行文件同目录中,可移步以下链接进行下载 Core-Github项目地址 GUI-Github项目 ...
- Percona XtraDB Cluster 5.7
附加:相关在线文档https://www.percona.com/software/documentation 安装要求: 1.root权限2.保证开放3306.4444.4567.4568端口3.关 ...
- 除了C语言,C++······竟然还有Z语言?
只能说自己见识短,头一次听说Z语言.先普及一下吧: Z语言是由牛津大学程序设计研究小组开发的一种形式语言,它是一种以一阶谓词演算为主要理论基础的规约语言,是一种功能性语言.Z语言是将事物的状态和行为用 ...
- Gogoing的NABCD
特点之一:路线推荐 N 用户出行需要一个合理的路线计划 A 运用百度地图,还有根据自己的所想去的地方,推荐最省时间,最省钱的路线安排 B 方便用户出行,节约时间,节约金钱 C 对于旅行方面的App, ...
- Teamwork(The eighth day of the team)
在经过算是蛮艰辛的努力后吧,我们终于有了一点点成果.虽然还离理想中的蛮遥远的,但是我们相信,虽然我们走得很慢,但是我们一直都会坚持前进.