4044: [Cerc2014] Virus synthesis

Time Limit: 20 Sec  Memory Limit: 128 MB

Description

Viruses are usually bad for your health. How about fighting them with... other viruses? In 
this problem, you need to find out how to synthesize such good viruses. 
We have prepared for you a set of strings of the letters A, G, T and C. They correspond to the 
DNA nucleotide sequences of viruses that we want to svnthesize, using the following operations: 
* Adding a nucleotide either to the beginning or the end of the existing sequence 
* Replicating the sequence, reversing the copied piece, and gluing it either to the beginmng or 
to the end of the original (so that e.g., AGTC can become AGTCCTGA or CTGAAGTC). 
We're concerned about efficiency, since we have very many such sequences, some of them verv 
long. Find a wav to svnthesize them in a mmimum number of operations. 
你要用ATGC四个字母用两种操作拼出给定的串: 
1.将其中一个字符放在已有串开头或者结尾 
2.将已有串复制,然后reverse,再接在已有串的头部或者尾部 
一开始已有串为空。求最少操作次数。 
len<=100000 

Input

The first line of input contains the number of test cases T. The descriptions of the test cases 
follow: 
Each test case consists of a single line containing a non-empty string. The string uses only 
the capital letters A, C, G and T and is not longer than 100 000 characters. 

Output

For each test case, output a single line containing the minimum total number of operations 
necessary to construct the given sequence.

Sample Input

4
AAAA
AGCTTGCA
AAGGGGAAGGGGAA
AAACAGTCCTGACAAAAAAAAAAAAC

Sample Output

3
8
6
18
 
题解:
这道题是一道回文自动机的DP好题啊。。。很难想,解释起来似乎也很混乱,
有不明白欢迎询问,因为这样写题解也不能完全解释明白233
 我们考虑,假设答案为ans,那初始化ans=串长.
如果ans能够减小,那一定是某一个回文串通过复制来做出的贡献.
注意,只能是一个,因为一旦复制就要复制全串,
最终的目标串一定是添加字符(可以是0个,即不添加)形成的,而不可能有两段复制.
由于这是一个回文有关题目......manacher看起来还不能搞
所以我们只好先把回文自动机建出来,对于回文自动机上每个节点i设f[i]表示生成节点i代表的串所需要的最少操作次数
那么这个串的生成可以是在对称轴外侧填字符+复制,也可以是在对称轴内侧填字符+复制
如果是在外侧:
假设串i可以在串j复制之前在外侧添加一个字符+复制得到,
那么我们可以想到,f[i]=min(f[j]+1)
或者,f[i]可以通过某个回文后缀对称轴内侧填字符+复制得到,
那么这个回文后缀的长度一定小于len[i]/2
回文后缀我们可以通过暴力跳fail指针来寻找
转移方程为f[i]=min(len[i]/2+f[j]-len[j]+1)
但是对于本题的数据范围这样会T掉……
那么我们考虑,对于i的某个可行复制串回文字串j,以及fail[j]
f[j]-len[j]的值显然要大于f[fail[j]]-len[fail[j]],那么我们只需要考虑第一个合法决策点,比它长的不会更优秀
但是这样还是会T……
所以我们考虑对于某个节点i,我们可以记录它的第一个最优决策点。
那么它的最优决策点可以从它的fail的最优决策点开始选择
(由于i和fail[i]的查找路径是一样的,len[fail]比len[i]长度更短,那么对于fail合法对于i也会合法)
所以在寻找i的决策点时,我们从fail[i]的最优决策点开始查找即可。
这样构建回文自动机的时候处理决策点,再遍历一遍求出每个串的f值,最后答案就是ans=min(n-len[i]+f[i])
代码实现:
 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=,inf=0x7fffffff;
char s[N];
struct Pam_Tree
{
int n,m,last,p,strategy[N];
int ch[N][],len[N],fail[N],f[N];
int q[N],hd,tl;
inline int id(char x)
{
switch(x)
{
case 'A':return ;
case 'C':return ;
case 'G':return ;
case 'T':return ;
}
return ;
}
inline int newnode(int l)
{
len[p]=l;memset(ch[p],,sizeof(ch[p]));
fail[p]=f[p]=strategy[p]=;
return p++;
}
inline int getfail(int x)
{
while(s[n-len[x]-]!=s[n])x=fail[x];
return x;
}
inline void work()
{
register int i,x,u;
hd=,tl=,q[++tl]=,f[]=;
int ans=m;
for(i=;i<p;++i)if(len[i]&)f[i]=i;
while(hd<=tl)
for(x=q[hd++],i=;i<;++i)
if((u=ch[x][i]))
q[++tl]=u,
f[u]=min(f[x]+,len[u]/+f[strategy[u]]-len[strategy[u]]+),
ans=min(ans,f[u]+m-len[u]);
printf("%d\n",ans);
}
inline void insert()
{
register int i,now,cur,d,x;
for(n=;n<=m;++n)
{
d=id(s[n]),cur=getfail(last);
if(!ch[cur][d])
{
now=newnode(len[cur]+),
fail[now]=ch[getfail(fail[cur])][d],
ch[cur][d]=now;
if(len[now]<=)strategy[now]=fail[now];
else
{
x=strategy[cur];
while(s[n-len[x]-]!=s[n]||(len[x]+)*>len[now])x=fail[x];
strategy[now]=ch[x][d];
}
}
last=ch[cur][d];
}
work();
}
inline void intn()
{
scanf("%s",s+),p=,newnode(),newnode(-);
s[]=,m=strlen(s+),last=,fail[]=,insert();
}
}PT;
int main()
{
int t;scanf("%d",&t);
while(t--)PT.intn();
}

[BZOJ4044]Virus synthesis 回文自动机的DP的更多相关文章

  1. BZOJ 4044 Luogu P4762 [CERC2014]Virus Synthesis (回文自动机、DP)

    好难啊..根本不会做..基本上是抄Claris... 题目链接: (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=4044 (luogu) ...

  2. bzoj4044/luoguP4762 [Cerc2014]Virus synthesis(回文自动机+dp)

    bzoj4044/luoguP4762 [Cerc2014]Virus synthesis(回文自动机+dp) bzoj Luogu 你要用ATGC四个字母用两种操作拼出给定的串: 1.将其中一个字符 ...

  3. bzoj 4044: Virus synthesis 回文自动机

    题目大意: 你要用ATGC四个字母用两种操作拼出给定的串: 将其中一个字符放在已有串开头或者结尾 将已有串复制,然后reverse,再接在已有串的头部或者尾部 一开始已有串为空.求最少操作次数. le ...

  4. BZOJ 4044 Virus synthesis (回文自动机+dp)

    题目大意: 你可以在一个串的开头或者末尾加入一个字符,或者把当前整个串$reverse$,然后接在前面或者后面,求达到目标串需要的最少操作次数 对目标串建出$PAM$ 定义$dp[x]$表示当前在回文 ...

  5. bzoj 4044 Virus synthesis - 回文自动机 - 动态规划

    题目传送门 需要高级权限的传送门 题目大意 要求用两种操作拼出一个长度为$n$的只包含'A','T','G','C'的字符串 在当前字符串头或字符串结尾添加一个字符 将当前字符串复制,将复制的串翻转, ...

  6. luogu P4762 [CERC2014]Virus synthesis (回文自动机)

    大意: 初始有一个空串, 操作(1)在开头或末尾添加一个字符. 操作(2)在开头或末尾添加该串的逆串. 求得到串$S$所需最少操作数. 显然最后一定是由某个偶回文通过添加字符得到的, 那么只需要求出所 ...

  7. [加强版] Codeforces 835D Palindromic characteristics (回文自动机、DP)

    题目链接: https://codeforces.com/contest/835/problem/D 题意: 一个回文串是\(1\)-回文的,如果一个回文串的左半部分和右半部分一样且都是\(k\)-回 ...

  8. [CERC2014]Virus synthesis【回文自动机+DP】

    [CERC2014]Virus synthesis 初始有一个空串,利用下面的操作构造给定串 SS . 1.串开头或末尾加一个字符 2.串开头或末尾加一个该串的逆串 求最小化操作数, \(|S| \l ...

  9. 洛谷P4762 [CERC2014]Virus synthesis(回文自动机+dp)

    传送门 回文自动机的好题啊 先建一个回文自动机,然后记$dp[i]$表示转移到$i$节点代表的回文串的最少的需要次数 首先肯定2操作越多越好,经过2操作之后的串必定是一个回文串,所以最后的答案肯定是由 ...

随机推荐

  1. javaweb学习5——JSP

    声明:本文只是自学过程中,记录自己不会的知识点的摘要,如果想详细学习JavaWeb,请到孤傲苍狼博客学习,JavaWeb学习点此跳转 本文链接:https://www.cnblogs.com/xdp- ...

  2. c++的重载 缺省参数和命名空间详解

    参加了几次笔试,发现有很多c++方面的问题被卡了.从现在开始进攻c++.之后会陆续更新c++学习笔记. 先说说我学习的书籍,大家如果有好的书籍推荐,感谢留言. 暂时是在看这些书自学. 1.C++介绍. ...

  3. Appium+python的单元测试框架unittest(1)(转)

    unittest为python语言自带的单元测试框架,python把unittest封装为一个标准模块封装在python开发包中.unittest中常用的类有:unittest.TestCase.un ...

  4. Unity 实现一个简单的 TPS 相机

    效果如下: 代码如下: public class TPSCamera : MonoBehaviour { /// <summary> /// 目标对象 /// </summary&g ...

  5. ThreadPoolExecutor 使用说明

    它是一个ExecutorService,使用线程池中的线程执行提交的任务.通常我们使用Executors框架,定义使用. 线程池主要用来解决两类问题:通过缓存一定数量的可用线程,避免频繁的线程创建,销 ...

  6. Hbase基本用法

    hbase 一些重要的解释(杂) 访问habse三种方式 访问hbase table中的行,只有三种方式: 1 通过单个row key访问 2 通过row key的range 3 全表扫描 Row k ...

  7. phpcmsv9广告版位调用方法

    <div class="ya"> <?php // pc:get 使用sql语句获取指定条件的广告版位! ?> {pc:get sql="SELE ...

  8. Netty源码分析第6章(解码器)---->第1节: ByteToMessageDecoder

    Netty源码分析第六章: 解码器 概述: 在我们上一个章节遗留过一个问题, 就是如果Server在读取客户端的数据的时候, 如果一次读取不完整, 就触发channelRead事件, 那么Netty是 ...

  9. 【Ansible】ansible 任务失败控制

    任务失败控制 Ansible 通常默认会确保检测模块和命令的返回码并且会快速失败 – 专注于一个错误除非你另作打算. 有时一条命令会返回 0 但那不是报错.有时命令不会总是报告它 ‘改变’ 了远程系统 ...

  10. Linux 文件系统 -- 简述几种文件类型

    Linux 中一切皆为文件,文件类型也有多种,使用 ls -l 命令可以查看文件的属性,所显示结果的第一列的第一个字符用来表明该文件的文件类型,如下: 1.普通文件 使用 ls -l 命令后,第一列第 ...