快速用梯度下降法实现一个Logistic Regression 分类器
前阵子听说一个面试题:你实现一个logistic Regression需要多少分钟?搞数据挖掘的人都会觉得实现这个简单的分类器分分钟就搞定了吧?
因为我做数据挖掘的时候,从来都是顺手用用工具的,尤其是微软内部的TLC相当强大,各种机器学习的算法都有,于是自从离开学校后就没有自己实现过这些基础的算法。当有一天心血来潮自己实现一个logistic regression的时候,我会说用了3个小时么?。。。羞羞
---------------------------------------------------前言结束----------------------------------------------
当然logistic regression的渊源还是有点深的,想复习理论知识的话可以去http://en.wikipedia.org/wiki/Logistic_regression , 我这里就直接讲实现啦。
首先要了解一个logistic function

这个函数的图像是这个样子的:

而我们要实现的logistic regression model,就是要去学习出一组权值w:

x 指feature构成的向量。 这个向量w就可以将每个instance映射到一个实数了。
假如我们要出里的是2分类问题,那么问题就被描述为学习出一组w,使得h(正样本)趋近于1, h(负样本)趋近于0.
现在就变成了一个最优化问题,我们要让误差最小化。 现在问题来了,怎么定义误差函数呢?
首先想到的是L2型损失函数啦,于是啪啪啪写上了
。
很久没有复习logistic regression的人最容易犯错的就是在这了。正确的写法是:
,
然后对它求偏导数得到梯度下降法的迭代更新方程:
。
于是你会发现这个迭代方程是和线性回归的是一样的!
理清了过程时候,代码就变得异常简单了:
public class LogisticRegression
{
private int _maxIteration = ;
private double _stepSize = 0.000005;
//private double _stepSize = 0.1;
private double _lambda = 0.1;
private double decay = 0.95; public int dim;
public double[] theta; public LogisticRegression(int dim)
{
this.dim = dim;
} public LogisticRegression(int dim, double stepSize)
: this(dim)
{
this._stepSize = stepSize;
} public void Train(Instance[] instances)
{
Initialize(); int instCnt = instances.Length;
double[] dev =new double[this.dim];
for (int t = ; t < this._maxIteration; t++)
{
double cost = ;
for (int i = ; i < instCnt; i++)
{
double h_x = MathLib.Logistic(MathLib.VectorInnerProd(instances[i].featureValues, this.theta));
// calculate cost function
cost += instances[i].label * Math.Log(h_x) + ( - instances[i].label) * Math.Log( - h_x);
}
cost *= -1.0 / instCnt;
Console.WriteLine("{0},{1}", t, cost); for (int i = ; i < instCnt; i++)
{
ResetArray(dev);
double h_x = MathLib.Logistic(MathLib.VectorInnerProd(instances[i].featureValues, this.theta));
double error = h_x- instances[i].label ;
for (int j = ; j < this.dim; j++)
{
dev[j] += error*instances[i].featureValues[j] + *dev[j]*this._lambda;
this.theta[j] -= this._stepSize * dev[j] ;
//BoundaryLimiting(ref this.theta[j], 0, 1);
}
}
//this._stepSize *= decay;
//if (this._stepSize > 0.000001)
//{
// this._stepSize = 0.000001;
//}
}
} private void BoundaryLimiting(ref double alpha, double lowerbound, double upperbound)
{
if (alpha < lowerbound)
{
alpha = lowerbound;
}
else if (alpha > upperbound)
{
alpha = upperbound;
}
} public double[] Predict(Instance[] instances)
{
double[] results = new double[instances.Length];
for (int i = ; i < results.Length; i++)
{
results[i] = MathLib.Logistic(MathLib.VectorInnerProd(instances[i].featureValues, this.theta));
}
return results;
} private void ResetArray(double[] dev)
{
for (int i = ; i < dev.Length; i++)
{
dev[i] = ;
}
} private void Initialize()
{
Random ran = new Random(DateTime.Now.Second); this.theta = new double[this.dim];
for (int i = ; i < this.dim; i++)
{
this.theta[i] = ran.NextDouble() * ; // initialize theta with a small value
}
} public static void Test()
{
LogisticRegression lr = new LogisticRegression(); List<Instance> instances = new List<Instance>();
using (StreamReader rd = new StreamReader(@"D:\\local exp\\data.csv"))
{
string content = rd.ReadLine();
while ((content = rd.ReadLine()) != null)
{
instances.Add(Instance.ParseInstance(content,','));
}
} // MinMaxNormalize(instances); lr.Train(instances.ToArray()); } private static void MinMaxNormalize(List<Instance> instances)
{
int dim = instances[].dim;
double[] min = new double[dim];
double[] max = new double[dim]; int instCnt = instances.Count;
for (int i = ; i < instCnt; i++)
{
for (int j = ; j < dim; j++)
{
if (i == || instances[i].featureValues[j] < min[j])
{
min[j] = instances[i].featureValues[j];
}
if (i == || instances[i].featureValues[j] > max[j])
{
max[j] = instances[i].featureValues[j];
}
}
} for (int j = ; j < dim; j++)
{
double gap = max[j] - min[j];
if (gap <= )
{
continue;
}
for (int i = ; i < instCnt; i++)
{
instances[i].featureValues[j] = (instances[i].featureValues[j] - min[j]) / gap;
}
} }
}
前面提到说我花了3个小时,其中很大一部分原因是在debug算法为啥没有收敛。这里有个很重要的步骤是把feature规范化到[0,1] 。 如果不normalize的话,参数调起来比较麻烦,loss function也经常蹦到NaN去了。
以下是对比normalize和不加normalization的收敛曲线图:

我用的实现数据可以在 http://pingax.com/wp-content/uploads/2013/12/data.csv 下载到。 它是一个2维的数据, 分布如下:

快速用梯度下降法实现一个Logistic Regression 分类器的更多相关文章
- Logistic Regression分类器
1. 两类Logistic回归 Logistic回归是一种非常高效的分类器.它不仅可以预测样本的类别,还可以计算出分类的概率信息. 不妨设有$n$个训练样本$\{x_1, ..., x_n\}$,$x ...
- Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization
原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- 李宏毅机器学习笔记3:Classification、Logistic Regression
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...
- Python机器学习笔记 Logistic Regression
Logistic回归公式推导和代码实现 1,引言 logistic回归是机器学习中最常用最经典的分类方法之一,有人称之为逻辑回归或者逻辑斯蒂回归.虽然他称为回归模型,但是却处理的是分类问题,这主要是因 ...
- 梯度下降法原理与python实现
梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法. 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离 ...
- 梯度下降法(BGD、SGD)、牛顿法、拟牛顿法(DFP、BFGS)、共轭梯度法
一.梯度下降法 梯度:如果函数是一维的变量,则梯度就是导数的方向: 如果是大于一维的,梯度就是在这个点的法向量,并指向数值更高的等值线,这就是为什么求最小值的时候要用负梯度 梯度下降法(Gr ...
- 使用Logistic Regression Algorithm进行多分类数字识别的Octave仿真
所需解决的问题是,训练一个Logistic Regression系统,使之能够识别手写体数字1-10,每张图片为20px*20px的灰度图.训练样例的输入X是5000行400列的一个矩阵,每一行存储一 ...
- pytorch梯度下降法讲解(非常详细)
pytorch随机梯度下降法1.梯度.偏微分以及梯度的区别和联系(1)导数是指一元函数对于自变量求导得到的数值,它是一个标量,反映了函数的变化趋势:(2)偏微分是多元函数对各个自变量求导得到的,它反映 ...
- Logistic Regression - Formula Deduction
Sigmoid Function \[ \sigma(z)=\frac{1}{1+e^{(-z)}} \] feature: axial symmetry: \[ \sigma(z)+ \sigma( ...
随机推荐
- pycharm如何显示工具栏
1.没有工具栏的效果图如下: 2.在view中找到Toolbar打上勾即可显示: 3.工具栏设置成功显示效果图如下: 3.如何显示一个类或方法所在的文件,以及该文件下的所有方法,可以快速定位到该行
- ncl 函数源码 gc_inout
转自气象家园论坛 经过不懈努力,终于找到了gc_inout函数的源代码,原来在这个文件里面!一颗赛艇 位置:/ncl_ncarg-6.5.0-src/ni/src/lib/nfpfort/sg_too ...
- 测试模型---V模型
软件测试&软件工程 软件测试是软件工程不可缺少的一部分. 一.V模型简介 需求分析 验收测试 概要设计 系统测试 详细设计 集成测试 编码 单元测试 (1)单元测试: 又称模块测试,针对软 ...
- webpack新手入门——配置及安装
webpack 是一个现代 JavaScript 应用程序的静态模块打包器.当 webpack 处理应用程序时,它会递归地构建一个依赖关系图(dependency graph),其中包含应用程序需要的 ...
- SICP读书笔记 3.3
SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...
- 基于tensorflow实现mnist手写识别 (多层神经网络)
标题党其实也不多,一个输入层,三个隐藏层,一个输出层 老样子先上代码 导入mnist的路径很长,现在还记不住 import tensorflow as tf import tensorflow.exa ...
- nodejs 几篇有用的文章
深入浅出Node.js(三):深入Node.js的模块机制 http://www.infoq.com/cn/articles/nodejs-module-mechanism Node.js简单介绍并实 ...
- whoami,who,w命令详解
http://www.voidcn.com/blog/wszzdanm/article/p-6145895.html 命令功能:显示登录用户的信息 命令格式: 常用选项: 举例: w 显示已经登录的用 ...
- jenkins配置01--用户添加及权限配置
原文出自:https://www.cnblogs.com/kevingrace/p/6019707.html 下面重点记录下jenkins安装后的一些配置: (1)添加用户权限 jenkins初次登陆 ...
- Java-URLEncoder.encode 什么时候才是必须的
当你希望把一段 URL 当成另一个 URL 的参数时,比如:当用户点击交易的按钮时你发现未登录就跳转到 login 页面同时带上一个参数记录在登录之前用户是希望访问的那个交易页面,这样在登录完成之后再 ...