python3 学习使用api

支持向量机的两种核函数模型进行预测

git: https://github.com/linyi0604/MachineLearning

from sklearn.datasets import load_boston
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVR
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
import numpy as np # 1 准备数据
# 读取波士顿地区房价信息
boston = load_boston()
# 查看数据描述
# print(boston.DESCR) # 共506条波士顿地区房价信息,每条13项数值特征描述和目标房价
# 查看数据的差异情况
# print("最大房价:", np.max(boston.target)) # 50
# print("最小房价:",np.min(boston.target)) # 5
# print("平均房价:", np.mean(boston.target)) # 22.532806324110677 x = boston.data
y = boston.target # 2 分割训练数据和测试数据
# 随机采样25%作为测试 75%作为训练
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=33) # 3 训练数据和测试数据进行标准化处理
ss_x = StandardScaler()
x_train = ss_x.fit_transform(x_train)
x_test = ss_x.transform(x_test) ss_y = StandardScaler()
y_train = ss_y.fit_transform(y_train.reshape(-1, 1))
y_test = ss_y.transform(y_test.reshape(-1, 1)) # 4.1 支持向量机模型进行学习和预测
# 线性核函数配置支持向量机
linear_svr = SVR(kernel="linear")
# 训练
linear_svr.fit(x_train, y_train)
# 预测 保存预测结果
linear_svr_y_predict = linear_svr.predict(x_test) # 多项式核函数配置支持向量机
poly_svr = SVR(kernel="poly")
# 训练
poly_svr.fit(x_train, y_train)
# 预测 保存预测结果
poly_svr_y_predict = linear_svr.predict(x_test) # 5 模型评估
# 线性核函数 模型评估
print("线性核函数支持向量机的默认评估值为:", linear_svr.score(x_test, y_test))
print("线性核函数支持向量机的R_squared值为:", r2_score(y_test, linear_svr_y_predict))
print("线性核函数支持向量机的均方误差为:", mean_squared_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(linear_svr_y_predict)))
print("线性核函数支持向量机的平均绝对误差为:", mean_absolute_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(linear_svr_y_predict)))
# 对多项式核函数模型评估
print("对多项式核函数的默认评估值为:", poly_svr.score(x_test, y_test))
print("对多项式核函数的R_squared值为:", r2_score(y_test, poly_svr_y_predict))
print("对多项式核函数的均方误差为:", mean_squared_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(poly_svr_y_predict)))
print("对多项式核函数的平均绝对误差为:", mean_absolute_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(poly_svr_y_predict))) '''
线性核函数支持向量机的默认评估值为: 0.651717097429608
线性核函数支持向量机的R_squared值为: 0.651717097429608
线性核函数支持向量机的均方误差为: 27.0063071393243
线性核函数支持向量机的平均绝对误差为: 3.426672916872753
对多项式核函数的默认评估值为: 0.40445405800289286
对多项式核函数的R_squared值为: 0.651717097429608
对多项式核函数的均方误差为: 27.0063071393243
对多项式核函数的平均绝对误差为: 3.426672916872753
'''

机器学习之路:python支持向量机回归SVR 预测波士顿地区房价的更多相关文章

  1. 机器学习之路: python 决策树分类DecisionTreeClassifier 预测泰坦尼克号乘客是否幸存

    使用python3 学习了决策树分类器的api 涉及到 特征的提取,数据类型保留,分类类型抽取出来新的类型 需要网上下载数据集,我把他们下载到了本地, 可以到我的git下载代码和数据集: https: ...

  2. 机器学习之路: python 回归树 DecisionTreeRegressor 预测波士顿房价

    python3 学习api的使用 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.datasets import ...

  3. 机器学习之路: python 线性回归LinearRegression, 随机参数回归SGDRegressor 预测波士顿房价

    python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets ...

  4. 机器学习之路: python k近邻分类器 KNeighborsClassifier 鸢尾花分类预测

    使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.da ...

  5. 机器学习之路--Python

    常用数据结构 1.list 列表 有序集合 classmates = ['Michael', 'Bob', 'Tracy'] len(classmates) classmates[0] len(cla ...

  6. 机器学习之路:python 集成回归模型 随机森林回归RandomForestRegressor 极端随机森林回归ExtraTreesRegressor GradientBoostingRegressor回归 预测波士顿房价

    python3 学习机器学习api 使用了三种集成回归模型 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.dat ...

  7. 机器学习之路:python k近邻回归 预测波士顿房价

    python3 学习机器学习api 使用两种k近邻回归模型 分别是 平均k近邻回归 和 距离加权k近邻回归 进行预测 git: https://github.com/linyi0604/Machine ...

  8. 吴裕雄 python 机器学习——支持向量机非线性回归SVR模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

  9. 吴裕雄 python 机器学习——支持向量机线性回归SVR模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

随机推荐

  1. SearchSploit

    在我们的GitHub上的Exploit Database存储库中包含一个名为"searchsploit"的Exploit-DB的命令行搜索工具,该工具还允许您在任何地方随身携带一个 ...

  2. python实现梯度下降法

    # coding:utf-8 import numpy as np import matplotlib.pyplot as plt x = np.arange(-5/2,5/2,0.01) y = - ...

  3. Ubuntu 14.04 Nvidia显卡驱动安装及设置

    更换主板修复grub 引导后,无法从Nvidia进入系统(光标闪烁), 可能是显卡驱动出了问题. 1. 进入BIOS设置, 从集成显卡进入系统 将显示器连接到集显的VGI口, 并在BIOS中设置用集显 ...

  4. 洛谷 P3835: 【模板】可持久化平衡树

    题目传送门:洛谷P3835. 题意简述: 题面说的很清楚了. 题解: 考虑建立一棵每个节点都表示一个版本的树. 以初始版本 \(0\) 为根.对于第 \(i\) 个操作,从 \(v_i\) 向 \(i ...

  5. JBoss6.1.0修改启动jvm内存以及修改日志级别【转】

    转自 JBoss6.1.0修改启动jvm内存以及修改日志级别 - liangbinny的专栏 - 博客频道 - CSDN.NEThttp://blog.csdn.net/liangbinny/arti ...

  6. Python 模块进阶

    import导入模块 1. import 搜索路径 import sys sys.path 例子: In [1]: import sys In [2]: sys.path Out[2]: ['', ' ...

  7. android studio实现Intent通信-------牛刀小试

    概述: 本博文实现一种小程序,两个Activity单向通信,主从关系,MainActivty 页面布局一个EditText+Button,实现逻辑是单击按钮将信息发送给另外一个DisplayMessa ...

  8. django(1)安装及配置

    1.版本选择 Django 1.5.x 支持 Python 2.6.5 Python 2.7, Python 3.2 和 3.3. Django 1.6.x 支持 Python 2.6.X, 2.7. ...

  9. loaded some nib but the view outlet was not set(转载)

    当使用 initWithNibName 函数, 并使用 由nib文件生成的ViewController 的view属性时候,遇到这个问题. //load loc.xib UIViewControlle ...

  10. 2016-2017-2 20155309南皓芯《java程序设计》第十周学习总结

    教材内容总结 网络编程 定义:网络编程就是在两个或两个以上的设备之间传输数据. 计算机网络概述: 网络编程的实质就是两个(或多个)设备(例如计算机)之间的数据传输. 网络中的每个设备都会有一个唯一的数 ...