正题

题目链接:https://www.luogu.com.cn/problem/P4323


题目大意

给出\(n\)个点的树和加上一个点之后的树(编号打乱)。

求多出来的是哪个点(如果有多少个就输出编号最小的)。

\(1\leq n\leq 10^5\)


解题思路

定义一下\(hash\)值\(P(i)\)

我的做法是\(P(i)=p^i\),\(p\)是一个质数,当然这样好像容易被卡,安全点的做法是用第\(i\)个质数或者直接用复数\(hash\)。

然后定义一下带根的\(hash\)值

\[f_x=\sum_{y\in son_x}f_y\times P(siz_y)
\]

然后换根求出两棵树里面所有点作为根的\(hash\)值,第一棵树里的丢进\(map\)。然后第二棵树里面枚举一下叶子然后算一下去掉之后的\(hash\)值在\(map\)里面匹配(1号点要特判)

时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#define ll long long
using namespace std;
const ll N=1e5+10,P=998244353,p=133331;
vector<ll> T[N],G[N];map<ll,bool>mp;
ll n,siz[N],pw[N],f[N],g[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
void Dfs1(ll x,ll fa,vector<ll> *T){
siz[x]=f[x]=1;
for(ll i=0;i<T[x].size();i++){
ll y=T[x][i];
if(y==fa)continue;
Dfs1(y,x,T);siz[x]+=siz[y];
(f[x]+=f[y]*pw[siz[y]]%P)%=P;
}
return;
}
void Dfs2(ll x,ll fa,vector<ll> *T){
for(ll i=0;i<T[x].size();i++){
ll y=T[x][i];
if(y==fa)continue;
g[y]=(g[x]-f[y]*pw[siz[y]]%P+P)%P;
(g[y]=f[y]+g[y]*pw[siz[1]-siz[y]]%P)%=P;
Dfs2(y,x,T);
}
return;
}
signed main()
{
scanf("%lld",&n);pw[0]=1;
for(ll i=1;i<=n+1;i++)
pw[i]=pw[i-1]*p%P;
for(ll i=1;i<n;i++){
ll x,y;
scanf("%lld%lld",&x,&y);
G[x].push_back(y);
G[y].push_back(x);
}
for(ll i=1;i<=n;i++){
ll x,y;
scanf("%lld%lld",&x,&y);
T[x].push_back(y);
T[y].push_back(x);
}
Dfs1(1,1,G);g[1]=f[1];Dfs2(1,1,G);
for(ll i=1;i<=n;i++)mp[g[i]]=1; Dfs1(1,1,T);g[1]=f[1];
Dfs2(1,1,T);
if(T[1].size()<=1){
ll y=T[1][0];
if(mp[f[y]])
{puts("1");return 0;}
}
for(ll x=2;x<=n+1;x++){
if(T[x].size()>1)continue;
ll y=T[x][0];
ll tmp=(g[y]-pw[1]+P)%P;
if(mp[tmp]){printf("%lld\n",x);return 0;}
}
return 0;
}

P4323-[JSOI2016]独特的树叶【换根dp,树哈希】的更多相关文章

  1. 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市

    P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...

  2. Luogu P4323 [JSOI2016]独特的树叶

    一道比较好的树Hash的题目,提供一种不一样的Hash方法. 首先无根树的同构判断一般的做法只有树Hash,所以不会的同学可以做了Luogu P5043 [模板]树同构([BJOI2015]树的同构) ...

  3. P4323 [JSOI2016]独特的树叶(树哈希)

    传送门 树哈希?->这里 反正大概就是乱搞--的吧-- //minamoto #include<bits/stdc++.h> #define R register #define l ...

  4. [BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]

    题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \ ...

  5. 2018.10.15 NOIP训练 水流成河(换根dp)

    传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p ...

  6. [JSOI2016]独特的树叶

    https://zybuluo.com/ysner/note/1177340 题面 有一颗大小为\(n\)的树\(A\),现加上一个节点并打乱编号,形成树\(B\),询问加上的节点最后编号是多少? \ ...

  7. 小奇的仓库:换根dp

    一道很好的换根dp题.考场上现场yy十分愉快 给定树,求每个点的到其它所有点的距离异或上m之后的值,n=100000,m<=16 只能线性复杂度求解,m又小得奇怪.或者带一个log像kx一样打一 ...

  8. 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)

    题意 ​ 题目链接:https://www.luogu.org/problem/P4827 ​ 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...

  9. Acesrc and Travel(2019年杭电多校第八场06+HDU6662+换根dp)

    题目链接 传送门 题意 两个绝顶聪明的人在树上玩博弈,规则是轮流选择下一个要到达的点,每达到一个点时,先手和后手分别获得\(a_i,b_i\)(到达这个点时两个人都会获得)的权值,已经经过的点无法再次 ...

随机推荐

  1. Spring-JDBC表情符号不能存入数据库

    ALTER TABLE TABLE_NAME CONVERT TO CHARACTER SET utf8mb4; JDBC解决方案: //params List<Object> param ...

  2. Qt生成和调用动态库dll,和静态库.a(windows和linux通用)

    系统1:ThinkPad T570.Windows10.QT5.12.2(Qt Creater 4.8.2)一.动态库.dll的创建和调用1.在qtcreater中按如下步骤创建动态库,动态库名为my ...

  3. Spring中常用重要的接口

    Spring (ApplicationContext 初始化Bean的方法 refresh()) public void refresh() throws BeansException, Illega ...

  4. python入门(需要C++基础)

    title: python语法入门 author: Sun-Wind date: August 25, 2021 python语法入门 博主最近参加一项比赛,因为需要用到python,所以在这里记录自 ...

  5. CPF 入门教程 - 各个控件介绍(八)

    CPF C#跨平台桌面UI框架 系列教程 CPF 入门教程(一) CPF 入门教程 - 数据绑定和命令绑定(二) CPF 入门教程 - 样式和动画(三) CPF 入门教程 - 绘图(四) CPF 入门 ...

  6. php常用的函数

    addslashes: 字符串加入斜线.bin2hex: 二进位转成十六进位.chop: 去除连续空白.chr: 返回序数值的字符.chunk_split: 将字符串分成小段.convert_cyr_ ...

  7. linux centos7 read 命令

    2021-08-24 1. 命令简介 read 命令就是读取控制台输入,会将从键盘输入的数据分割成一个个字段依次存储在 parameter[0] .parameter[1] ......,若是没有指定 ...

  8. Python语法之函数、引用和装饰器

    所谓函数,就是把具有独立功能的代码块组织成为一个小模块,在需要的时候调用 函数是带名字的代码块,用于完成具体的工作 需要在程序中多次执行同一项任务时,你无需反复编写完成该任务的代码,而只需调用该 任务 ...

  9. 在C#中使用RSA进行加密和解密

    这篇文章向您展示了如何在c#.net Windows窗体应用程序中使用RSA算法对字符串进行加密和解密.RSA是由Ron Rivest,Adi Shamir和Leonard Adleman开发的非对称 ...

  10. XML解析——Jsoup解析器

    一.Jsoup解析器快速入门案例 Docement对象,文本对象,包含着各个Dom树结构 1.引入Jsoup解析器的jar包放在lib文件夹下后,写java代码 其中, 二.Jsoup对象 1.Jso ...