exCRT & 骆克强乘法
exCRT & 骆克强乘法
只是丢两个板子啦。
exCRT的做法就是每次拿两个方程合并成一个,合并的过程推下式子就是个 exgcd。具体可以在 zjk 的 ptt 里面找到。
先放个 $ O(1) $ 慢速乘
ll mul( ll a , ll b , ll p ) { a %= p , b %= p; return ( (a * b - (ll)( (ll)( (long double)a / p * b + 0.5 ) * p )) % p + p ) % p; }
然后一个 exgcd
void exgcd( ll a , ll b , ll& d , ll& x , ll& y ) {
if( !b ) { d = a , x = 1 , y = 0; return; }
else exgcd( b , a % b , d , y , x ) , y -= x * ( a / b );
}
最后是 excrt
Luogu 板子题和 PTT 上的 ab 居然是反着的。。。毒瘤
#include "iostream"
#include "algorithm"
#include "cstring"
#include "cstdio"
using namespace std;
#define MAXN 100006
typedef long long ll;
ll mul( ll a , ll b , ll p ) { a %= p , b %= p; return ( (a * b - (ll)( (ll)( (long double)a / p * b + 0.5 ) * p )) % p + p ) % p; }
int n;
ll A[MAXN] , B[MAXN];
ll gcd( int a , int b ) { return b ? a : gcd( b , a % b ); }
void exgcd( ll a , ll b , ll& d , ll& x , ll& y ) {
if( !b ) { d = a , x = 1 , y = 0; return; }
else exgcd( b , a % b , d , y , x ) , y -= x * ( a / b );
}
bool crt( ll& a1 , ll a2 , ll& b1 , ll b2 ) {
ll d = a2 - a1;
ll g , k1 , k2;
exgcd( b1 , b2 , g , k1 , k2 );
if( d % g ) return 0;
else {
ll r = b2 / g;
k1 = mul( k1 , d / g , r );
a1 = k1 * b1 + a1;
b1 = ( b1 * r );
return 1;
}
}
ll excrt( ) {
ll a1 = A[0] , b1 = B[0] , a2 , b2;
for( int i = 1 ; i < n ; ++ i ) {
a2 = A[i] , b2 = B[i];
if( !crt( a1 , a2 , b1 , b2 ) ) return -1;
}
return a1;
}
int main() {
cin >> n;
for( int i = 0 ; i < n ; ++ i ) scanf("%lld%lld",&B[i],&A[i]);
cout << excrt( ) << endl;
}
exCRT & 骆克强乘法的更多相关文章
- Data-independent acquisition mass spectrometry in metaproteomics of gut microbiota - implementation and computational analysis DIA技术在肠道宏蛋白质组研究中的方法实现和数据分析 (解读人:闫克强)
文献名:Data-independent acquisition mass spectrometry in metaproteomics of gut microbiota - implementat ...
- Fast and accurate bacterial species identification in urine specimens using LC-MS/MS mass spectrometry and machine learning (解读人:闫克强)
文献名:Fast and accurate bacterial species identification in urine specimens using LC-MS/MS mass spectr ...
- 解读人:闫克强,Metabolic and gut microbial characterization of obesity-prone mice under high-fat diet(高脂饮食下易胖倾向小鼠的代谢和肠道微生物菌群特征分析)
单位: 上海中医药大学 蚌埠医学院 上海交通大学附属第六人民医院 夏威夷大学癌症中心 第二军医大学 技术:非靶向代谢组学,16S rRNA测序技术 一. 概述: 本研究对小鼠进行高脂饮食,根据体重增长 ...
- 洛谷4245:【模板】任意模数NTT——题解
https://www.luogu.org/problemnew/show/P4245 给两个多项式,求其乘积,每个系数对p取模. 参考: 代码与部分理解参考https://www.luogu.org ...
- 李洪强iOS经典面试题上
李洪强iOS经典面试题上 1. 风格纠错题 修改完的代码: 修改方法有很多种,现给出一种做示例: // .h文件 // http://weibo.com/luohanchenyilong/ / ...
- 【学习笔记】OI模板整理
CSP2019前夕整理一下模板,顺便供之后使用 0. 非算法内容 0.1. 读入优化 描述: 使用getchar()实现的读入优化. 代码: inline int read() { int x=0; ...
- [转] ACM中国国家集训队论文集目录(1999-2009)
国家集训队1999论文集 陈宏:<数据结构的选择与算法效率——从IOI98试题PICTURE谈起>来煜坤:<把握本质,灵活运用——动态规划的深入探讨>齐鑫:<搜索方法中的 ...
- NOI 国家集训队论文集
鉴于大家都在找这些神牛的论文.我就转载了这篇论文合集 国家集训队论文分类 组合数学 计数与统计 2001 - 符文杰:<Pólya原理及其应用> 2003 - 许智磊:<浅谈补集转化 ...
- ACM/IOI 历年国家集训队论文集和论文算法分类整理
国家集训队1999论文集 陈宏:<数据结构的选择与算法效率--从IOI98试题PICTURE谈起> 来煜坤:<把握本质,灵活运用--动态规划的深入探讨> 齐鑫:<搜索方法 ...
随机推荐
- CentOS 压缩解压
目录 命令 tar gzip.gunzip bzip2.bunzip2 zip.unzip 命令组合 打包:将多个文件合成一个总的文件,这个总的文件通常称为"归档". 压缩:将一个 ...
- 【c++ Prime 学习笔记】第10章 泛型算法
标准库未给容器添加大量功能,而是提供一组独立于容器的泛型算法 算法:它们实现了一些经典算法的公共接口 泛型:它们可用于不同类型的容器和不同类型的元素 利用这些算法可实现容器基本操作很难做到的事,例如查 ...
- mybatis学习笔记(1)基本环境
1.pom引入 <dependencies> <dependency> <groupId>org.mybatis</groupId> <artif ...
- OO_JAVA_表达式求导_单元总结
OO_JAVA_表达式求导_单元总结 这里引用个链接,是我写的另一份博客,讲的是设计层面的问题,下面主要是对自己代码的单元总结. 程序分析 (1)基于度量来分析自己的程序结构 第一次作业 程序结构大致 ...
- zip和flatMap没有生效
在Reactor 中flatMap和zip等没有生效 1.一个简单的示例代码如下: 2.示例运行结果 3.得到结论 最近在项目中使用了 Project Reactor ,但发现代码在写着写着有些地方没 ...
- 2021.7.21考试总结[NOIP模拟22]
终于碾压小熠了乐死了 T1 d 小贪心一波直接出正解,没啥好说的(bushi 好像可以主席树暴力找,但我怎么可能会呢?好像可以堆优化简单找,但我怎么可能想得到呢? 那怎么办?昨天两道单调指针加桶,我直 ...
- stm32知识学习的先后顺序
这里大概的罗列了一些学习STM32的内容,以及学习顺序.如果是新手的话,建议边看中文手册和学习视频;如果是已经入门的,个人建议自己做一个项目,不论项目大小,当然里面会涉及到自己已经学习过的,或者是自己 ...
- 原串反转 牛客网 程序员面试金典 C++ Python
原串反转 牛客网 程序员面试金典 C++ Python 题目描述 请实现一个算法,在不使用额外数据结构和储存空间的情况下,翻转一个给定的字符串(可以使用单个过程变量). 给定一个string iniS ...
- PHP笔记4__函数/全局、静态变量/函数参数/加载函数库/,,
<?php header("Content-type: text/html; charset=utf-8"); echo table(5,5); function table ...
- Java不同时区(timezone)之间时间转换
最近出现一个问题是这样的:我们的系统在国外打印的日志时间由于时差关系和国内不一致,看起来不方便,希望国外的日志和国内保持一致,即:需要对不同时区的时间做转换调整,统一为国内时间. 一.关于时区的一些概 ...