[luogu4548]歌唱王国
(可以参考hdu4652,因此推导过程比较省略)
类似的定义$f_{i}$和$g_{i}$,同样去插入$len$个字符,但注意到并不是任意一个位置都可以作为结尾,$i+j$可以作为结尾当且仅当$s[0,j)=s[len-j,j)$
令两者生成函数分别为$F(x)$和$G(x)$,则有$G(x)=\sum_{i\in S}m^{i}\frac{F(x)}{x^{i}}$,其中$S=\{i|s[0,i)=s[len-i,len)\}$(根据定义$len\in S$),可以通过kmp或哈希求出
答案即为$G(1)=\sum_{x\in S}m^{x}$,注意对10000取模以及补充前导0


1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 #define mod 10000
5 int n,m,t,ans,a[N],mi[N],nex[N];
6 int main(){
7 scanf("%d%d",&m,&t);
8 mi[0]=1;
9 for(int i=1;i<N-4;i++)mi[i]=1LL*mi[i-1]*m%mod;
10 while (t--){
11 scanf("%d",&n);
12 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
13 nex[0]=nex[1]=0;
14 for(int i=2,j=0;i<=n;i++){
15 while ((j)&&(a[i]!=a[j+1]))j=nex[j];
16 if (a[i]==a[j+1])j++;
17 nex[i]=j;
18 }
19 ans=0;
20 for(int i=n;i;i=nex[i])ans=(ans+mi[i])%mod;
21 if (ans<10)printf("0");
22 if (ans<100)printf("0");
23 if (ans<1000)printf("0");
24 printf("%d\n",ans);
25 }
26 }
[luogu4548]歌唱王国的更多相关文章
- 【BZOJ1152】歌唱王国(生成函数,KMP)
[BZOJ1152]歌唱王国(生成函数,KMP) 题面 BZOJ 洛谷 题解 根据\(YMD\)论文来的QwQ. 首先大家都知道普通型生成函数是\(\displaystyle \sum_{i=0}^{ ...
- [CTSC2006]歌唱王国
[CTSC2006]歌唱王国 Tags:题解 题意 链接:在空串后不断随机添加字符,直到出现串\(S_i\)为止.求最终串的期望长度.\(\sum |S_i|\le 5*10^6\) 题解 以下内容来 ...
- bzoi1152 [CTSC2006]歌唱王国Singleland
[CTSC2006]歌唱王国Singleland Time Limit: 30 Sec Memory Limit: 162 MB Description 在歌唱王国,所有人的名字都是一个非空的仅包含整 ...
- 【题解】歌唱王国(概率生成函数+KMP)+伦讲的求方差
[题解]歌唱王国(概率生成函数+KMP)+伦讲的求方差 生成函数的本质是什么呀!为什么和It-st一样神 设\(f_i\)表示填了\(i\)个时候停下来的概率,\(g_i\)是填了\(i\)个的时候不 ...
- Luogu4548 CTSC2006 歌唱王国 概率生成函数、哈希
传送门 orz ymd 考虑构造生成函数:设\(F(x) = \sum\limits_{i=0}^\infty f_ix^i\),其中\(f_i\)表示答案为\(i\)的概率:又设\(G(x) = \ ...
- 解题:CTSC 2006 歌唱王国
题面 概率生成函数 对于菜鸡博主来说好难啊 其一般形式为$F(x)=\sum\limits_{i=0}^∞[x==i]x_i$,第i项的系数表示离散变量x取值为i的概率 一般的两个性质:$F(1)=1 ...
- 【BZOJ】1152: [CTSC2006]歌唱王国Singleland
题解 读错题了,是最后留下一个牛人首长歌颂他,和其他人没有关系,t就相当于数据组数 结论题,具体可看 https://www.zhihu.com/question/59895916/answer/19 ...
- 洛谷P4548 [CTSC2006]歌唱王国(概率生成函数)
题面 传送门 给定一个长度为\(L\)的序列\(A\).然后每次掷一个标有\(1\)到\(m\)的公平骰子并将其上的数字加入到初始为空的序列\(B\)的末尾,如果序列B中已经出现了给定序列\(A\), ...
- luogu P4548 [CTSC2006]歌唱王国
传送门 这题\(\mathrm{YMD}\)去年就讲了,然而我今年才做(捂脸) 考虑生成函数,设\(f_i\)表示最终串长为\(i\)的概率,其概率生成函数为\(F(x)=\sum f_ix^i\), ...
随机推荐
- 演员 Or 开发者的自我修养
演员 Or 开发者的自我修养 时至今日,我都还是很怀念小时候与一群玩伴编写剧本.拍摄,那时候的我还有一个远大的"白日梦"--成为一名导演.很可惜,终究是"白日梦" ...
- 洛谷4219 BJOI2014大融合(LCT维护子树信息)
QWQ 这个题目是LCT维护子树信息的经典应用 根据题目信息来看,对于一个这条边的两个端点各自的\(size\)乘起来,不过这个应该算呢? 我们可以考虑在LCT上多维护一个\(xv[i]\)表示\(i ...
- 分析你的第一个Android程序
目录 分析你的第一个Android程序 Android模式的项目结构 切换项目结构模式 Project模式的项目结构 .gradle和idea app build(没有发现这个文件夹) gradle ...
- 【数据结构】<栈的应用>回文判断
通过栈与队列相关内容的学习,我们知道,栈是"先进后出"的线性表,而队列是"先进先出"的线性表.可以通过构造栈与队列来实现在这一算法.将要判断的字符序列依次压栈和 ...
- 如何快速体验鸿蒙全新声明式UI框架ArkUI?
HDC2021将于10月22日在东莞松山湖正式开幕,大会将设立Codelab体验专区,超多好玩.有趣的Demo等你体验.想快速入门HarmonyOS?学习HarmonyOS新特性?以下几个Codela ...
- Java中的函数式编程(六)流Stream基础
写在前面 如果说函数式接口和lambda表达式是Java中函数式编程的基石,那么stream就是在基石上的最富丽堂皇的大厦. 只有熟悉了stream,你才能说熟悉了Java 的函数式编程. 本文主要介 ...
- 第五课第四周笔记3:Multi-Head Attention多头注意力
Multi-Head Attention多头注意力 让我们进入并了解多头注意力机制. 符号变得有点复杂,但要记住的事情基本上只是你在上一个视频中学到的自我注意机制的四个大循环. 让我们看一下每次计算自 ...
- Vue el 使用el-checkbox-group复选框进行单选框操作
el-checkbox-group这个组件与其他复选框不一样,我当初也是半天不知道怎么操作 页面使用v-model绑定 size就是等比例缩小放大,v-ror循环应该看的懂.重要的是@chage到我们 ...
- js--数组的 fill() 填充方法详解
前言 我们知道了很多了初始化数组的方法,但是初始化数组之后,数组中的每一项元素默认为 empty 空位占位,如何对数组这些空位添加默认的元素,ES6提供了 fill() 方法实现这一操作.本文总结数组 ...
- Python课程笔记(十)
不陌生,之前学习一个开源SpringBoot项目,Mysql5.5更换到5.7搞得头疼. 数据库连接的坑之前写的IDEA系列连接会遇到的问题.课程代码 今天上课就主要学习了python如何连接mysq ...