\(\mathcal{Description}\)

  Link.

  给定一个 \(n\) 个点 \(m\) 条边的连通无向图,并给出 \(q\) 个点对 \((u,v)\),令 \(u\) 到 \(v\) 的路径所必经的结点权值 \(+1\)。求最终每个结点的权值。

  \(n\le10^5\),\(m,q\le2\times10^5\)。

\(\mathcal{Solution}\)

  看到”必经之点“,应该考虑圆方树。

  对于每个点对,直接在圆方树上作差分。具体地,两个圆点的 tag++,其 LCA 和 LCA 的父亲(如果存在)的 tag--,最后一遍 DFS 求每个圆点的子树 tag 和即可。

  复杂度 \(\mathcal O(n)\)。

\(\mathcal{Code}\)

#include <cstdio>

const int MAXN = 1e5, MAXM = 2e5;
int n, m, q, snode;
int dfc, top, dfn[MAXN + 5], low[MAXN + 5], stk[MAXN + 5];
int dep[MAXN * 2 + 5], fa[MAXN * 2 + 5][20], tag[MAXN * 2 + 5], sum[MAXN * 2 + 5]; struct Graph {
int ecnt, head[MAXN * 2 + 5], to[MAXM * 2 + 5], nxt[MAXM * 2 + 5];
inline void link ( const int s, const int t ) {
to[++ ecnt] = t, nxt[ecnt] = head[s];
head[s] = ecnt;
}
inline void add ( const int u, const int v ) {
link ( u, v ), link ( v, u );
}
} src, tre; inline bool chkmin ( int& a, const int b ) { return b < a ? a = b, true : false; } inline void Tarjan ( const int u, const int f ) {
dfn[u] = low[u] = ++ dfc, stk[++ top] = u;
for ( int i = src.head[u], v; i; i = src.nxt[i] ) {
if ( ( v = src.to[i] ) == f ) continue;
if ( ! dfn[v] ) {
Tarjan ( v, u ), chkmin ( low[u], low[v] );
if ( low[v] >= dfn[u] ) {
tre.add ( u, ++ snode );
do tre.add ( snode, stk[top] ); while ( stk[top --] ^ v );
}
} else chkmin ( low[u], dfn[v] );
}
} inline void init ( const int u, const int f ) {
dep[u] = dep[fa[u][0] = f] + 1;
for ( int i = 1; i <= 17; ++ i ) fa[u][i] = fa[fa[u][i - 1]][i - 1];
for ( int i = tre.head[u], v; i; i = tre.nxt[i] ) {
if ( ( v = tre.to[i] ) ^ f ) {
init ( v, u );
}
}
} inline int calcLCA ( int u, int v ) {
if ( dep[u] < dep[v] ) u ^= v ^= u ^= v;
for ( int i = 17; ~ i; -- i ) if ( dep[fa[u][i]] >= dep[v] ) u = fa[u][i];
if ( u == v ) return u;
for ( int i = 17; ~ i; -- i ) if ( fa[u][i] ^ fa[v][i] ) u = fa[u][i], v = fa[v][i];
return fa[u][0];
} inline void calcAns ( const int u, const int f ) {
sum[u] = tag[u];
for ( int i = tre.head[u], v; i; i = tre.nxt[i] ) {
if ( ( v = tre.to[i] ) ^ f ) {
calcAns ( v, u ), sum[u] += sum[v];
}
}
} int main () {
scanf ( "%d %d %d", &n, &m, &q ), snode = n;
for ( int i = 1, u, v; i <= m; ++ i ) {
scanf ( "%d %d", &u, &v );
src.add ( u, v );
}
Tarjan ( 1, 0 ), init ( 1, 0 );
for ( int i = 1, u, v; i <= q; ++ i ) {
scanf ( "%d %d", &u, &v );
++ tag[u], ++ tag[v];
int w = calcLCA ( u, v );
-- tag[w];
if ( fa[w] ) -- tag[fa[w][0]];
}
calcAns ( 1, 0 );
for ( int i = 1; i <= n; ++ i ) printf ( "%d\n", sum[i] );
return 0;
}

Solution -「BZOJ 3331」压力的更多相关文章

  1. Solution -「BZOJ 3812」主旋律

    \(\mathcal{Description}\)   Link.   给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...

  2. Solution -「BZOJ #3786」星系探索

    \(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个点的有根树,点有点权,支持 \(q\) 次操作: 询问 \(u\) 到根的点权和: 修改 \(u\) ...

  3. Solution -「BZOJ 4316」小C的独立集

    \(\mathcal{Description}\)   Link.   求包含 \(n\) 个结点 \(m\) 条边的仙人掌的最大独立集.   \(n\le5\times10^4\),\(m\le6\ ...

  4. 「BZOJ 4228」Tibbar的后花园

    「BZOJ 4228」Tibbar的后花园 Please contact lydsy2012@163.com! 警告 解题思路 可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 ...

  5. 「BZOJ 3645」小朋友与二叉树

    「BZOJ 3645」小朋友与二叉树 解题思路 令 \(G(x)\) 为关于可选大小集合的生成函数,即 \[ G(x)=\sum[i\in c ] x^i \] 令 \(F(x)\) 第 \(n\) ...

  6. 「BZOJ 4502」串

    「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段 ...

  7. 「BZOJ 4289」 PA2012 Tax

    「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...

  8. 「BZOJ 2534」 L - gap字符串

    「BZOJ 2534」 L - gap字符串 题目描述 有一种形如 \(uv u\) 形式的字符串,其中 \(u\) 是非空字符串,且 \(v\) 的长度正好为 \(L\), 那么称这个字符串为 \( ...

  9. 「BZOJ 2956」模积和

    「BZOJ 2956」模积和 令 \(l=\min(n,m)\).这个 \(i\neq j\) 非常不优雅,所以我们考虑分开计算,即: \[\begin{aligned} &\sum_{i=1 ...

随机推荐

  1. [Beyond Compare] 排除/忽略 .svn 文件夹

    [Beyond Compare] Exclude .svn folders Beyond Compare 3 Session >> Session Settings... >> ...

  2. 使用Eclipse新建项目

    如果图片损坏,点击查看: https://www.toutiao.com/i6496078011538866702/ 出现"新建"对话框,输入mavem 点击创建"简单M ...

  3. 大数据安全与RANGER学习和使用

    概述 再说ranger之前需要明白一下大数据的安全体系的整体介绍,安全体系其实也就是权限可控,先说说权限:权限管理的目标,绝对不是简单的在技术层面建立起用户,密码和权限点的映射关系这么简单的事,更重要 ...

  4. vps上安装CobaltStrike服务端

    今天我在我的vps上安装CobaltStrike服务端,真的是踩坑无数,所以写这篇博客记录一下,防止后人再踩坑 安装Oracle JDK8 官方不建议使用OpenJdk,建议使用Oracle JDK的 ...

  5. MySQL提权之启动项提权

    关于MySQL的启动项提权,听其名知其意.就是将一段 VBS脚本导入到  C:\Documents and Settings\All Users\「开始」菜单\程序\启动 下,如果管理员重启了服务器, ...

  6. JVM调优2-远程监控

    监控远程JVM VisualJVM不仅是可以监控本地jvm进程,还可以监控远程的jvm进程,需要借助于JMX技术实现. 什么是JMX JMX(Java Management Extensions,即J ...

  7. 输出前 n 个Fibonacci数

    本题要求编写程序,输出菲波那契(Fibonacci)数列的前N项,每行输出5个,题目保证输出结果在长整型范围内.Fibonacci数列就是满足任一项数字是前两项的和(最开始两项均定义为1)的数列,例如 ...

  8. 【Java】重载与重写

    重载与重写 一.重载 定义 在同一个类中,允许存在一个以上的同名方法,只要它们的参数个数或者参数类型不同即可.同一个类.相同方法名,参数列表不同:参数个数不同,参数类型不同. Java的重载是可以包括 ...

  9. Linux命令(2)--cp拷贝、mv剪切、head、tail追踪、tar归档

    文章目录 一.知识回顾 ls cd 二.Linux基本操作(二) 1.cp 拷贝 2.mv 移动(剪切) 3.head 头部 4.tail 追踪(尾部) 5.tar 归档 查看 压缩 解压 总结 一. ...

  10. Docker环境安装,基本命令集合

    一.docker安装 1).卸载旧的安装包 centos7默认安装的docker版本是1.13.1,卸载它,安装新的版本. root用户下,一次把这坨命令复制进去 yum remove docker ...