Solution -「BZOJ 3331」压力
\(\mathcal{Description}\)
Link.
给定一个 \(n\) 个点 \(m\) 条边的连通无向图,并给出 \(q\) 个点对 \((u,v)\),令 \(u\) 到 \(v\) 的路径所必经的结点权值 \(+1\)。求最终每个结点的权值。
\(n\le10^5\),\(m,q\le2\times10^5\)。
\(\mathcal{Solution}\)
看到”必经之点“,应该考虑圆方树。
对于每个点对,直接在圆方树上作差分。具体地,两个圆点的 tag++,其 LCA 和 LCA 的父亲(如果存在)的 tag--,最后一遍 DFS 求每个圆点的子树 tag 和即可。
复杂度 \(\mathcal O(n)\)。
\(\mathcal{Code}\)
#include <cstdio>
const int MAXN = 1e5, MAXM = 2e5;
int n, m, q, snode;
int dfc, top, dfn[MAXN + 5], low[MAXN + 5], stk[MAXN + 5];
int dep[MAXN * 2 + 5], fa[MAXN * 2 + 5][20], tag[MAXN * 2 + 5], sum[MAXN * 2 + 5];
struct Graph {
int ecnt, head[MAXN * 2 + 5], to[MAXM * 2 + 5], nxt[MAXM * 2 + 5];
inline void link ( const int s, const int t ) {
to[++ ecnt] = t, nxt[ecnt] = head[s];
head[s] = ecnt;
}
inline void add ( const int u, const int v ) {
link ( u, v ), link ( v, u );
}
} src, tre;
inline bool chkmin ( int& a, const int b ) { return b < a ? a = b, true : false; }
inline void Tarjan ( const int u, const int f ) {
dfn[u] = low[u] = ++ dfc, stk[++ top] = u;
for ( int i = src.head[u], v; i; i = src.nxt[i] ) {
if ( ( v = src.to[i] ) == f ) continue;
if ( ! dfn[v] ) {
Tarjan ( v, u ), chkmin ( low[u], low[v] );
if ( low[v] >= dfn[u] ) {
tre.add ( u, ++ snode );
do tre.add ( snode, stk[top] ); while ( stk[top --] ^ v );
}
} else chkmin ( low[u], dfn[v] );
}
}
inline void init ( const int u, const int f ) {
dep[u] = dep[fa[u][0] = f] + 1;
for ( int i = 1; i <= 17; ++ i ) fa[u][i] = fa[fa[u][i - 1]][i - 1];
for ( int i = tre.head[u], v; i; i = tre.nxt[i] ) {
if ( ( v = tre.to[i] ) ^ f ) {
init ( v, u );
}
}
}
inline int calcLCA ( int u, int v ) {
if ( dep[u] < dep[v] ) u ^= v ^= u ^= v;
for ( int i = 17; ~ i; -- i ) if ( dep[fa[u][i]] >= dep[v] ) u = fa[u][i];
if ( u == v ) return u;
for ( int i = 17; ~ i; -- i ) if ( fa[u][i] ^ fa[v][i] ) u = fa[u][i], v = fa[v][i];
return fa[u][0];
}
inline void calcAns ( const int u, const int f ) {
sum[u] = tag[u];
for ( int i = tre.head[u], v; i; i = tre.nxt[i] ) {
if ( ( v = tre.to[i] ) ^ f ) {
calcAns ( v, u ), sum[u] += sum[v];
}
}
}
int main () {
scanf ( "%d %d %d", &n, &m, &q ), snode = n;
for ( int i = 1, u, v; i <= m; ++ i ) {
scanf ( "%d %d", &u, &v );
src.add ( u, v );
}
Tarjan ( 1, 0 ), init ( 1, 0 );
for ( int i = 1, u, v; i <= q; ++ i ) {
scanf ( "%d %d", &u, &v );
++ tag[u], ++ tag[v];
int w = calcLCA ( u, v );
-- tag[w];
if ( fa[w] ) -- tag[fa[w][0]];
}
calcAns ( 1, 0 );
for ( int i = 1; i <= n; ++ i ) printf ( "%d\n", sum[i] );
return 0;
}
Solution -「BZOJ 3331」压力的更多相关文章
- Solution -「BZOJ 3812」主旋律
\(\mathcal{Description}\) Link. 给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...
- Solution -「BZOJ #3786」星系探索
\(\mathcal{Description}\) Link. 给定一棵含 \(n\) 个点的有根树,点有点权,支持 \(q\) 次操作: 询问 \(u\) 到根的点权和: 修改 \(u\) ...
- Solution -「BZOJ 4316」小C的独立集
\(\mathcal{Description}\) Link. 求包含 \(n\) 个结点 \(m\) 条边的仙人掌的最大独立集. \(n\le5\times10^4\),\(m\le6\ ...
- 「BZOJ 4228」Tibbar的后花园
「BZOJ 4228」Tibbar的后花园 Please contact lydsy2012@163.com! 警告 解题思路 可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 ...
- 「BZOJ 3645」小朋友与二叉树
「BZOJ 3645」小朋友与二叉树 解题思路 令 \(G(x)\) 为关于可选大小集合的生成函数,即 \[ G(x)=\sum[i\in c ] x^i \] 令 \(F(x)\) 第 \(n\) ...
- 「BZOJ 4502」串
「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段 ...
- 「BZOJ 4289」 PA2012 Tax
「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...
- 「BZOJ 2534」 L - gap字符串
「BZOJ 2534」 L - gap字符串 题目描述 有一种形如 \(uv u\) 形式的字符串,其中 \(u\) 是非空字符串,且 \(v\) 的长度正好为 \(L\), 那么称这个字符串为 \( ...
- 「BZOJ 2956」模积和
「BZOJ 2956」模积和 令 \(l=\min(n,m)\).这个 \(i\neq j\) 非常不优雅,所以我们考虑分开计算,即: \[\begin{aligned} &\sum_{i=1 ...
随机推荐
- [Beyond Compare] 排除/忽略 .svn 文件夹
[Beyond Compare] Exclude .svn folders Beyond Compare 3 Session >> Session Settings... >> ...
- 使用Eclipse新建项目
如果图片损坏,点击查看: https://www.toutiao.com/i6496078011538866702/ 出现"新建"对话框,输入mavem 点击创建"简单M ...
- 大数据安全与RANGER学习和使用
概述 再说ranger之前需要明白一下大数据的安全体系的整体介绍,安全体系其实也就是权限可控,先说说权限:权限管理的目标,绝对不是简单的在技术层面建立起用户,密码和权限点的映射关系这么简单的事,更重要 ...
- vps上安装CobaltStrike服务端
今天我在我的vps上安装CobaltStrike服务端,真的是踩坑无数,所以写这篇博客记录一下,防止后人再踩坑 安装Oracle JDK8 官方不建议使用OpenJdk,建议使用Oracle JDK的 ...
- MySQL提权之启动项提权
关于MySQL的启动项提权,听其名知其意.就是将一段 VBS脚本导入到 C:\Documents and Settings\All Users\「开始」菜单\程序\启动 下,如果管理员重启了服务器, ...
- JVM调优2-远程监控
监控远程JVM VisualJVM不仅是可以监控本地jvm进程,还可以监控远程的jvm进程,需要借助于JMX技术实现. 什么是JMX JMX(Java Management Extensions,即J ...
- 输出前 n 个Fibonacci数
本题要求编写程序,输出菲波那契(Fibonacci)数列的前N项,每行输出5个,题目保证输出结果在长整型范围内.Fibonacci数列就是满足任一项数字是前两项的和(最开始两项均定义为1)的数列,例如 ...
- 【Java】重载与重写
重载与重写 一.重载 定义 在同一个类中,允许存在一个以上的同名方法,只要它们的参数个数或者参数类型不同即可.同一个类.相同方法名,参数列表不同:参数个数不同,参数类型不同. Java的重载是可以包括 ...
- Linux命令(2)--cp拷贝、mv剪切、head、tail追踪、tar归档
文章目录 一.知识回顾 ls cd 二.Linux基本操作(二) 1.cp 拷贝 2.mv 移动(剪切) 3.head 头部 4.tail 追踪(尾部) 5.tar 归档 查看 压缩 解压 总结 一. ...
- Docker环境安装,基本命令集合
一.docker安装 1).卸载旧的安装包 centos7默认安装的docker版本是1.13.1,卸载它,安装新的版本. root用户下,一次把这坨命令复制进去 yum remove docker ...