本文主要研究HPC上进行数据并行训练的可行性。作者首先在HPC上实现了两种通信量化算法(1 Bit SGD以及阈值量化),然后提出了自适应量化算法以解决它们的缺点。此外,发挥出量化算法的性能,作者还自己实现了一个Allreduce算法。

1 Bit SGD可以实现良好的重构和较低的误差,但与阈值量化相比,它的计算开销更大,并且压缩率不能达到32倍以上。阈值量化速度很快,但是不同的模型需要设置不同的阈值,而且选择好的阈值也很困难,并且使用阈值\(\tau\)作为重建值是次优的。如果阈值设置的比较小,那么由于误差补偿的存在,可能会导致传输大量的数据。

自适应量化使用固定比例\(\pi\)来表示每次迭代时要发送的梯度更新比例。第一步,自适应量化要确定满足当前迭代所需比例的正阈值\(\tau^+\)和负阈值\(\tau^-\)。假设梯度向量中有\(k\)个非负值,我们只需要发送其中最大的\(\frac{k}{\pi}\)个值,因此,正阈值\(\tau^+\)就是梯度向量中第\(\frac{k}{\pi}\)个值。一般而言,我们可以通过快速选择等高效算法,在\(O(N)\)时间内找到第\(\frac{k}{\pi}\)个元素。负阈值的确定与正阈值类似,只不过是选择梯度向量中最小的\(\frac{k}{\pi}\)个值。注意,正阈值和负阈值都由同一个比例\(\pi\)确定的。同样,自适应量化需要使用误差补偿技术来防止模型不收敛。在接收端的重建阶段,自适应量化分别对大于正阈值\(\tau^+\)和小于负阈值\(\tau^-\)的元素求一个平均值,用这两个均值分别作为重建向量中的元素。

作者发现原始的MPI_Allreduce接口在传输压缩数据时表现不好,而且使用用户自定义操作时MPI_Allreduce会退化成recursive-doubling实现,因此他使用原始的MPI_SendMPI_Recv方法实现了一个类似于Ring Allreduce的聚合通信算法。

下面是本文的一些实验结果。第一幅图展示了模型中第三个全连接层每次迭代时所发送的数据量。无量化和1 Bit量化的结果符合预期:要么发送完整的梯度矩阵,要么将数据量减少约32倍。自适应量化在\(\pi = 64\)的情况下,我们期望得到与1 Bit量化相似的数据压缩比。但是由于它使用采样来近似阈值以排除更新,因此它不能完全实现32倍的压缩比。但是,只要采样是一个足够好的近似值,那么数据量就不会过多或过少。阈值量化即使在\(\tau = 0.001\)的情况下也发送很少的数据,并且发送的数量非常不稳定。这就导致其测试精度明显低于其他方法,因为每个模型基本上仅从其本地的数据中进行学习。

下面这幅图展示了不同梯度量化方法的通信时间(同样是模型中第三个全连接层)。可以看到,阈值量化的通信时间是最短的,因为它只需要传输很少的数据。第二快的是传统的MPI_Allreduce,这是因为量化引入了额外的计算开销,当某一层本身的计算量较少时,这种额外的计算开销就会被放大。自适应量化紧随其后,而且相对于传统的MPI_Allreduce更加平稳。最慢的是1 Bit量化,因为它有一个额外的AdaGrad操作。

MLHPC 2016 | Communication Quantization for Data-parallel Training of Deep Neural Networks的更多相关文章

  1. MLHPC 2018 | Aluminum: An Asynchronous, GPU-Aware Communication Library Optimized for Large-Scale Training of Deep Neural Networks on HPC Systems

    这篇文章主要介绍了一个名为Aluminum通信库,在这个库中主要针对Allreduce做了一些关于计算通信重叠以及针对延迟的优化,以加速分布式深度学习训练过程. 分布式训练的通信需求 通信何时发生 一 ...

  2. Aluminum: An Asynchronous, GPU-Aware Communication Library Optimized for Large-Scale Training of Deep Neural Networks on HPC Systems

    本文发表在MLHPC 2018上,主要介绍了一个名为Aluminum通信库,这个库针对Allreduce做了一些关于计算通信重叠以及针对延迟的优化,以加速分布式深度学习训练过程. 分布式训练的通信需求 ...

  3. Training Deep Neural Networks

    http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural ...

  4. Training (deep) Neural Networks Part: 1

    Training (deep) Neural Networks Part: 1 Nowadays training deep learning models have become extremely ...

  5. [Box] Robust Training and Initialization of Deep Neural Networks: An Adaptive Basis Viewpoint

    目录 概 主要内容 LSGD Box 初始化 Box for Resnet 代码 Cyr E C, Gulian M, Patel R G, et al. Robust Training and In ...

  6. 深度学习(六十九)darknet 实现实验 Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffma

    本文主要实验文献文献<Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization ...

  7. 用matlab训练数字分类的深度神经网络Training a Deep Neural Network for Digit Classification

    This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify ima ...

  8. 论文翻译:BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or −1

    目录 摘要 引言 1.BinaryNet 符号函数 梯度计算和累积 通过离散化传播梯度 一些有用的成分 算法1 使用BinaryNet训练DNN 算法2 批量标准化转换(Ioffe和Szegedy,2 ...

  9. 论文翻译:BinaryConnect: Training Deep Neural Networks with binary weights during propagations

    目录 摘要 1.引言 2.BinaryConnect 2.1 +1 or -1 2.2确定性与随机性二值化 2.3 Propagations vs updates 2.4 Clipping 2.5 A ...

随机推荐

  1. 用jquery实现省市联动

    <!-- 需求: [1] 动态生成省份选择框. [2] 当选择了省份的某一项时, 动态改变 城市选择中的列表项. --> <!DOCTYPE html> <html la ...

  2. css上下居中

    position: absolute; top: 20%; left: 50%; transform: translateX(-50%); -ms-transform: translateX(-50% ...

  3. linux系统Kibana安装 汉化

    Elasticsearch官方系列软件Kibana,在控制台管理维护Elasticsearch. 这里注意Elasticsearch和Kibana的版本一定要一致. 官网下载地址 https://ww ...

  4. 【reverse】逆向4 初识堆栈

    [reverse]逆向4 初识堆栈 1.问题引入 假设我们需要一块内存,有如下的要求 主要用于临时存储一些数据(如果数据很少可以放入寄存器中) 能够记录存了多少数据 能够非常快速的找到某个数据 2.模 ...

  5. 一、neo4j中文文档-入门指南

    目录 neo4j中文文档-入门指南 Neo4j v4.4 neo4j **Cypher ** 开始使用 Neo4j 1. 安装 Neo4j 2. 文档 图数据库概念 1. 示例图 2.节点 3. 节点 ...

  6. golang中结构体和结构体指针的内存管理

    p1是结构体,p2是结构体指针. 2. 声明并赋值结构体和结构体指针 package main import "fmt" type Person struct { name str ...

  7. Android开发----WebView&Activity生命周期

    WebView webview是一个再应用中设置好位置和大小的浏览器,而且不会放置任何花哨的UI. 在大多数情况下,除非你调用了原生API,否则不必在webview中专门测试web应用. 首先为Web ...

  8. python网络爬虫-python基础(三)

    python安装 Anaconda的python科学计算环境,只需要想普通软件一样安装就可以把python的环境变量.解释器.开发环境都安装到计算机中 除此之外anaconda还提供众多的科学计算的包 ...

  9. Zookeeper应用场景汇总(超详细)

    Zookeeper典型应用场景汇总 数据发布与订阅(配置中心) 发布与订阅模型,即所谓的配置中心,顾名思义就是发布者将数据发布到ZK节点上,供订阅者动态获取数据,实现配置信息的集中式管理和动态更新.例 ...

  10. eclipse的web项目导入IDE报错

    问题:eclipse的web项目导入IDE报错 第一个问题: 解决:点击enable即可 第二个问题: 解决: 解决方法: 切换文件的编码 : from UTF-8 to GBK to UTF-8 参 ...