题意:

      给你n个人,再给你每个人都喜欢哪些人,让你找到一个最大的集合数,要求这个集合里面任意两个人都不喜欢彼此。

思路:

      直接就是在问最大点权独立集元素个数,没啥解释的一遍二分图就行了,输出 n - sum / 2,说下为什么有的最大点权独立集合除以2有的不除吧,这个没什么固定的,比如说这个题给的边一定是双向的,也就是说 1 喜欢 2, 到2的时候也会喜欢1 所以就多出来一倍,要除以二,不是什么最大点权独立集元素个数就是等于n - sum / 2,比如题目给的是单项的关系,就不用了,说这个的原因是记得以前学二分图的时候在网上看到有人说最大点权独立集元素个数是 n - sum / 2。只要理解了就不会22的记住了。说多了。。。


#include<stdio.h>
#include<string.h> #define N_node 500 + 50
#define N_edge 250000 + 50 typedef struct
{
int to ,next;
}STAR; STAR E[N_edge];
int list[N_node] ,tot;
int mk_dfs[N_node] ,mk_gx[N_node]; void add(int a ,int b)
{
E[++tot].to = b;
E[tot].next = list[a];
list[a] = tot;
} int DFS_XYL(int x)
{
for(int k = list[x] ;k ;k = E[k].next)
{
int to = E[k].to;
if(mk_dfs[to]) continue;
mk_dfs[to] = 1;
if(mk_gx[to] == -1 || DFS_XYL(mk_gx[to]))
{
mk_gx[to] = x;
return 1;
}
}
return 0;
} int main ()
{
int n ,a ,b ,i ,nn;
while(~scanf("%d" ,&n))
{
memset(list ,0 ,sizeof(list));
tot = 1;
for(i = 1 ;i <= n ;i ++)
{
scanf("%d: (%d) " ,&a ,&nn);
for(int j = 1 ;j <= nn ;j ++)
{
scanf("%d" ,&b);
add(a+ 1 ,b + 1);
}
}
int sum = 0;
memset(mk_gx ,255 ,sizeof(mk_gx));
for(i = 1 ;i <= n ;i ++)
{
memset(mk_dfs ,0 ,sizeof(mk_dfs));
sum += DFS_XYL(i);
}
printf("%d\n" ,n - sum / 2);
}
return 0;
}

POJ1466 最大点权独立集的更多相关文章

  1. 【BZOJ-1952】城市规划 [坑题] 仙人掌DP + 最大点权独立集(改)

    1952: [Sdoi2010]城市规划 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 73  Solved: 23[Submit][Status][ ...

  2. HDU 1565 最大点权独立集

    首先要明白图论的几个定义: 点覆盖.最小点覆盖: 点覆盖集即一个点集,使得所有边至少有一个端点在集合里.或者说是“点” 覆盖了所有“边”.. 最小点覆盖(minimum vertex covering ...

  3. SCU3185 Black and white(二分图最大点权独立集)

    题目大概说有几个黑色.白色矩阵,问能选出黑白不相交的矩形面积和的最大值. 建二分图,黑色矩阵为X部的点,白色为Y部,XY的点权都为其矩阵面积,如果有个黑白矩阵相交则它们之间有一条边,那样问题就是要从这 ...

  4. zoj 3165 (最小割,最大点权独立集)

    胡伯涛的<最小割模型在信息学竞赛中的应用>写的真牛. 这道题是选择一些男孩和女孩参加party,邀请的男孩女孩之间不能有 8g,图就是个明显的二分图,就是选择一些点之间没有8g关系,就是二 ...

  5. 【最大点权独立集】【HDU1565】【方格取数】

    题目大意: 给你一个n*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的和最大. 初看: 没想法 ...

  6. hdu 1565&&hdu 1569 (最大点权独立集)

    题目意思很明确就是选一些没有相连的数字,使和最大,建成二分图后求最大点权独立集,, #include<stdio.h> #include<string.h> const int ...

  7. hdu1565+hdu1569(最大点权独立集)

    传送门:hdu1565 方格取数(1) 传送门:hdu1569 方格取数(2) 定理:1. 最小点权覆盖集=最小割=最大流2. 最大点权独立集=总权-最小点权覆盖集 步骤: 1. 先染色,取一个点染白 ...

  8. HDU 1569 - 方格取数(2) - [最大点权独立集与最小点权覆盖集]

    嗯,这是关于最大点权独立集与最小点权覆盖集的姿势,很简单对吧,然后开始看题. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1569 Time Limi ...

  9. TZOJ 3665 方格取数(2)(最大点权独立集)

    描述 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大. 输入 包括多个测试实例 ...

随机推荐

  1. 微信小程序日期时间选择器(精确到秒)

    <picker mode="multiSelector" value="{{dateTime1}}" bindchange="changeDat ...

  2. 记一次Drone无法触发构建的问题

    问题 好巧不巧,当你晚上准备上线的时候,在下午临近下班的时候CI&CD工具出问题了,提交代码不能触发构建,不能上线了,Drone平台那边也下班了,正好CICD依赖的公司git仓库也出问题了(就 ...

  3. CVE-2017-12615 -Tomcat-任意写入文件

    漏洞分析参考 https://www.freebuf.com/vuls/148283.html 漏洞描述: 当 Tomcat运行在Windows操作系统时,且启用了HTTP PUT请求方法(例如,将 ...

  4. AtCoder Beginner Contest 187

    A Large Digits int n; int main() { IOS; int a, b, resa = 0, resb = 0; cin >> a >> b; whi ...

  5. Learn Python the Hard Way,ex37-2

    本练习为复习python的符号和关键字 数据类型有:True False None Strings numbers floats lists dict tuple set ""&q ...

  6. Spring Boot 轻量替代框架 Solon 的架构笔记

    Solon 是一个微型的Java开发框架.项目从2018年启动以来,参考过大量前人作品:历时两年,4000多次的commit:内核保持0.1m的身材,超高的跑分,良好的使用体验.支持:RPC.REST ...

  7. 读 Kafka 源码写优雅业务代码:配置类

    这个 Kafka 的专题,我会从系统整体架构,设计到代码落地.和大家一起杠源码,学技巧,涨知识.希望大家持续关注一起见证成长! 我相信:技术的道路,十年如一日!十年磨一剑! 往期文章 Kafka 探险 ...

  8. Python 详解修饰器 附带 js使用修饰器

    修饰器 功能 修饰器的主要功能是,在不改变已有代码的情况下,为某一个类,方法等扩展功能 首先看这样一段代码 def foo(): for i in range(10): print(i) foo() ...

  9. 走进docker-swarm 带大家快速掌握docker自带编排工具

    什么是Docker Swarm? 对比Docker 前面我们介绍过Docker可以理解成是一个我们的服务的独立运行的容器,那么在实际工作中,我们的系统可能是一个微服务应用,系统中根据业务拆分成多个模块 ...

  10. 力扣 - 剑指 Offer 09. 用两个栈实现队列

    目录 题目 思路 代码 复杂度分析 题目 剑指 Offer 09. 用两个栈实现队列 思路 刚开始想的是用stack1作为数据存储的地方,stack2用来作为辅助栈,如果添加元素直接push入stac ...