Strategic Game

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2925    Accepted Submission(s): 1222

Problem Description
Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

Your program should find the minimum number of soldiers that Bob has to put for a given tree.

The input file contains several data sets in text format. Each data set represents a tree with the following description:

the number of nodes
the description of each node in the following format
node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifier
or
node_identifier:(0)

The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500). Every edge appears only once in the input data.

For example for the tree:

the solution is one soldier ( at the node 1).

The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following table:

 
Sample Input
4
0:(1) 1
1:(2) 2 3
2:(0)
3:(0)
5
3:(3) 1 4 2
1:(1) 0
2:(0)
0:(0)
4:(0)
 
Sample Output
1
2
#include <iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
struct node
{
int brother,child;
int yes;//该点放士兵
int no; //该点不放士兵
}tree[];
int n,i,j,k,root,num,origin; void dfs(int root)
{
int child=tree[root].child;
while(child>)
{
dfs(child);
tree[root].yes+=min(tree[child].yes,tree[child].no);
//父亲结点放置了,儿子结点可以放置也可以不放置
tree[root].no+=tree[child].yes;
//父亲结点没有放置,儿子结点必须放置
child=tree[child].brother;
}
}
int main()
{
while(~scanf("%d",&n))
{
for(i=;i<=n;i++)
{
tree[i].brother=tree[i].child=;
tree[i].yes=;
tree[i].no=;
}
for(int t=;t<=n;t++)
{
scanf("%d:(%d)",&root,&num);
root++;
if (t==) origin=root;
for(i=;i<=num;i++)
{
int x;
scanf("%d",&x);
x++;
tree[x].brother=tree[root].child;
tree[root].child=x;
}
}
dfs(origin);
printf("%d\n",min(tree[origin].yes,tree[origin].no));
} return ;
}

代码二:

dproot[ i ]表示以i为根的子树,在i上放置一个士兵,看守住整个子树需要多少士兵。

all[ i ]表示看守住整个以i为根的子树需要多少士兵。

状态转移方程:

叶子节点: dproot[k] =1; all[k] = 0;

非叶子节点: dproot[i] = 1 + ∑all[j](j是i的儿子);

      all[i] = min( dproot[i], ∑dproot[j](j是i的儿子) );

#include <iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
const int M=+;
int dproot[M],all[M];
int i,n,x,y,k;
vector<int> v[M];
void dfs(int x,int fa)
{
int tmp=;
for(int i=;i<v[x].size();i++)
{
int k=v[x][i];
if (k==fa) continue;
dfs(k,x);
dproot[x]+=all[k];
tmp=tmp+dproot[k];
}
all[x]=min(dproot[x],tmp);
return;
}
int main()
{
while(~scanf("%d",&n))
{
for(i=;i<n;i++)
{
v[i].clear();
all[i]=;
dproot[i]=;
}
for(int t=;t<=n;t++)
{
scanf("%d:(%d)",&x,&y);
for(i=;i<=y;i++)
{
scanf("%d",&k);
v[x].push_back(k);
v[k].push_back(x);
}
}
dfs(,-);
printf("%d\n",all[]);
}
return ;
}

  

Source

HDU 1054 Strategic Game(树形DP)的更多相关文章

  1. HDU 1054 Strategic Game (树形dp)

    题目链接 题意: 给一颗树,用最少的点覆盖整棵树. 每一个结点可以防守相邻的一个边,求最少的点防守所有的边. 分析: 1:以当前节点为根节点,在该节点排士兵守护道路的最小消耗.在这种情况下,他的子节点 ...

  2. hdu 1054 Strategic Game(tree dp)

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  3. hdu1054 Strategic Game 树形DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1054 思路:树形DP,用二分匹配也能解决 定义dp[root][1],表示以root 为根结点的子树且 ...

  4. HDU - 1054 Strategic Game(二分图最小点覆盖/树形dp)

    d.一颗树,选最少的点覆盖所有边 s. 1.可以转成二分图的最小点覆盖来做.不过转换后要把匹配数除以2,这个待细看. 2.也可以用树形dp c.匈牙利算法(邻接表,用vector实现): /* 用ST ...

  5. HDU 1054 Strategic Game(树形DP)

    Problem Description Bob enjoys playing computer games, especially strategic games, but sometimes he ...

  6. hdu 1054 Strategic Game (简单树形DP)

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  7. HDU 1054 Strategic Game(最小点覆盖+树形dp)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=106048#problem/B 题意:给出一些点相连,找出最小的点数覆盖所有的 ...

  8. Strategic game(树形DP入门)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1054 题目大意:一棵树,要放置哨兵,要求最少放置多少哨兵能监视到所有的结点 题目分析: 放置哨兵无非两 ...

  9. POJ 2342 &&HDU 1520 Anniversary party 树形DP 水题

    一个公司的职员是分级制度的,所有员工刚好是一个树形结构,现在公司要举办一个聚会,邀请部分职员来参加. 要求: 1.为了聚会有趣,若邀请了一个职员,则该职员的直接上级(即父节点)和直接下级(即儿子节点) ...

  10. POJ1463:Strategic game(树形DP)

    Description Bob enjoys playing computer games, especially strategic games, but sometimes he cannot f ...

随机推荐

  1. UVALive 6948 Jokewithpermutation 深搜

    题意就是把一段序列拆成从1到n的形式 一开始暴力了一下 后来发现bug太多一定是思路不对…… #include<stdio.h> #include<iostream> #inc ...

  2. Chapter 15_4 子模块和包

    Lua支持具有层级性的模块名,可以用一个点来分隔名称中的层级. 比如,一个mod.sub模块,它就是mod的子模块.一个包(package)就是一个完整的模块树. 当你require "mo ...

  3. ubuntu下安装BeyondCompare比较工具

    在ubuntu12.04下使用比较工具,这里参考了网上的一个方法来安装BeyondCompare3 首先,下载相关软件: 这里选择了BCompare: http://www.scootersoftwa ...

  4. AIX 永久修改环境变量

    转自:http://blog.sina.com.cn/s/blog_5e3122450100stk5.html 方法一:PATH=$PATH:/usr/XX        export PATH重启一 ...

  5. Prime Path(BFS)

    Prime Path Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) Total S ...

  6. caffe层解读系列-softmax_loss

    转自:http://blog.csdn.net/shuzfan/article/details/51460895 Loss Function softmax_loss的计算包含2步: (1)计算sof ...

  7. Laravel框架开发规范-修订前期版

    1.追加App/Models目录,App/User.php迁移至App/Models目录中 ①配置内容属于架构信息.服务器信息.有必要隐藏无法提交git的信息,请使用.env文件配合env()方法进行 ...

  8. bootstrap开始咯

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <meta name ...

  9. VB.net结束进程

    Public Class Form1 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click ...

  10. VirtualBox 不能为虚拟电脑打开一个新的任务 可能的解决方案

    1. 在虚拟机上右键,清除保存状态 2.Cannot load R0 module C:\Program Files\Oracle\VirtualBox/VBoxDD2R0.r0: SUPR3Load ...