OpenJudge 726:ROADS

总时间限制: 1000ms内存限制: 65536kB

描述
N cities named with numbers 1 ... N are connected with one-way roads. Each road has two parameters associated with it : the road length and the toll that needs to be paid for the road (expressed in the number of coins). 
Bob and Alice used to live in the city 1. After noticing that Alice was cheating in the card game they liked to play, Bob broke up with her and decided to move away - to the city N. He wants to get there as quickly as possible, but he is short on cash.

We want to help Bob to find the shortest path from the city 1 to the city N that he can afford with the amount of money he has. 

输入
The first line of the input contains the integer K, 0 <= K <= 10000, maximum number of coins that Bob can spend on his way. 
The second line contains the integer N, 2 <= N <= 100, the total number of cities.

The third line contains the integer R, 1 <= R <= 10000, the total number of roads.

Each of the following R lines describes one road by specifying integers S, D, L and T separated by single blank characters :

  • S is the source city, 1 <= S <= N
  • D is the destination city, 1 <= D <= N
  • L is the road length, 1 <= L <= 100
  • T is the toll (expressed in the number of coins), 0 <= T <=100

Notice that different roads may have the same source and destination cities.

输出
The first and the only line of the output should contain the total length of the shortest path from the city 1 to the city N whose total toll is less than or equal K coins. 
If such path does not exist, only number -1 should be written to the output. 
样例输入
5
6
7
1 2 2 3
2 4 3 3
3 4 2 4
1 3 4 1
4 6 2 1
3 5 2 0
5 4 3 2
样例输出
11

求单源最短路。优先队列排序,路长为第一关键字,消耗费用为第二关键字。
 #include<cstdio>
#include<queue>
using namespace std;
int k,n,R;
int head[];
struct node{
int v;
int l,w;
int d;
int next;
bool operator < (const node & a) const{//重载运算符,多关键字排序
if(d==a.d)return w>a.w;
else return d>a.d;
}
}edge[]; priority_queue<node>Q; int dijkstra(){
node now1;
now1.v=;
now1.w=;
now1.d=;
Q.push(now1);
while(!Q.empty()){
node now=Q.top();
if(now.v==n)return now.d;
Q.pop();
for(int i=head[now.v];i;i=edge[i].next)
if(k>=now.w+edge[i].w){
node now2;
now2.v=edge[i].v;
now2.w=now.w+edge[i].w;
now2.d=now.d+edge[i].l;
Q.push(now2);
}
}
} int main(){
scanf("%d%d%d",&k,&n,&R);
for(int i=;i<=R;++i){
int x;
scanf("%d%d%d%d",&x,&edge[i].v,&edge[i].l,&edge[i].w);
edge[i].next=head[x];
head[x]=i;
}
printf("%d\n",dijkstra());
return ;
}
 

#图# #dijkstra# ----- OpenJudge 726:ROADS的更多相关文章

  1. 【LibreOJ】#6354. 「CodePlus 2018 4 月赛」最短路 异或优化建图+Dijkstra

    [题目]#6354. 「CodePlus 2018 4 月赛」最短路 [题意]给定n个点,m条带权有向边,任意两个点i和j还可以花费(i xor j)*C到达(C是给定的常数),求A到B的最短距离.\ ...

  2. [USACO09FEB] Revamping Trails 【分层图+Dijkstra】

    任意门:https://www.luogu.org/problemnew/show/P2939 Revamping Trails 题目描述 Farmer John dutifully checks o ...

  3. BZOJ3073: [Pa2011]Journeys(线段树优化建图 Dijkstra)

    题意 \(n\)个点的无向图,构造\(m\)次边,求\(p\)到任意点的最短路. 每次给出\(a, b, c, d\) 对于任意\((x_{a \leqslant x \leqslant b}, y_ ...

  4. [NOI2019]弹跳(KD-Tree/四分树/线段树套平衡树 优化建图+Dijkstra)

    本题可以用的方法很多,除去以下三种我所知道的就还有至少三种. 方法一:类似线段树优化建图,将一个平面等分成四份(若只有一行或一列则等分成两份),然后跑Dijkstra即可.建树是$O(n\log n) ...

  5. 【BZOJ-3627】路径规划 分层图 + Dijkstra + spfa

    3627: [JLOI2014]路径规划 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 186  Solved: 70[Submit][Status] ...

  6. bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级——分层图+dijkstra

    Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i ...

  7. POJ 2374 线段树建图+Dijkstra

    题意: 思路: 线段树+Dijkstra(要堆优化的) 线段树要支持打标记 一个栅栏 拆成两个点 :左和右 新加一个栅栏的时候 看看左端点有没有被覆盖过 如果有的话 就分别从覆盖的那条线段的左右向当前 ...

  8. 倒水问题UVA 10603——隐式图&&Dijkstra

    题目 给你三个容量分别为 $a,b,c$ 的杯子,最初只有第3个杯子装满了水,其他两个杯子为空.最少需要到多少水才能让一个某个杯子中的水有 $d$ 升呢?如果无法做到恰好 $d$ 升,就让某个杯子里的 ...

  9. HDU-3499Flight (分层图dijkstra)

    一开始想的并查集(我一定是脑子坏掉了),晚上听学姐讲题才知道就是dijkstra两层: 题意:有一次机会能使一条边的权值变为原来的一半,询问从s到e的最短路. 将dis数组开成二维,第一维表示从源点到 ...

随机推荐

  1. led.c驱动框架2nd

    led.c: #include <linux/module.h> #include <linux/init.h> #include <linux/fs.h> ; v ...

  2. hadoop Yarn运行机制

  3. DWR 整合之Struts2.3.16

    DWR 能够和任何框架结合. DWR 和 Struts 整合有 2 个层次.最基础的层次就是同时使用这两个框架,这是非常容易的,但是这样就不允许在 DWR 和 Struts 之间共享 Action 了 ...

  4. DWR整合之Servlet

    DWR 与 Servlet 有 2 个 Java 类你一般需要用在 DWR 中,是 webContext 和 WebContextFactory 在 DWR 1.x 它们在 uk.ltd.getahe ...

  5. springMVC文件上传优化

    1. 新建web project 2. 填 jar,注意新加入两个上传文件的jar, commons-io, commons-fileupload 3. 改写web.xml <?xml vers ...

  6. Linux 高可用(HA)集群基本概念详解

    大纲一.高可用集群的定义二.高可用集群的衡量标准三.高可用集群的层次结构四.高可用集群的分类 五.高可用集群常用软件六.共享存储七.集群文件系统与集群LVM八.高可用集群的工作原理 推荐阅读: Cen ...

  7. 在MAC下配置MySQL 5.7 数据库的编码问题

    1.MySQL 5.7 for MAC 默认没有my.cnf文件 ,首先 新建my.cnf文件: 2.在my.cnf文件追加 [mysqld] character-set-server=utf8mb4 ...

  8. openstack controller ha测试环境搭建记录(二)——配置corosync和pacemaker

    corosync.conf请备份再编辑:# vi /etc/corosync/corosync.conf totem {        version: 2 token: 10000        t ...

  9. Android 编译错误

    本人使用的是Android studio1.3版本,前几天调试通过的项目,现在编译出现了错误.错误信息如下 Project app: apk dependencies can only be jars ...

  10. mysql的 charset、collation、prefix了解

    charset,即字符集. collation,用于指定数据集如何排序,以及字符串的比对规则,即排序规则. prefix,即数据库里表使用的前缀. /************************* ...