hdu_5213_Lucky(莫队算法+容斥定理)
题目连接:hdu_5213_Lucky
题意:给你n个数,一个K,m个询问,每个询问有l1,r1,l2,r2两个区间,让你选取两个数x,y,x,y的位置为xi,yi,满足l1<=xi<=r1,l2<=y2<=r2,使得x+y=K;
题解:首先,这题没有修改操作,即可以离线,离线区间问题就要想到莫队算法,然后看状态怎么搞,因为要求的答案满足区间的可加性,我们令f(l,r)表示 l到r这个区间满足条件的ans,令F(l1,r1,l2,r2)为在这两个区间内选取的数满足条件的ans,则根据容斥定理,F(l1,r1,l2,r2)=f(l1,r2)-f(r1+1,r2)-f(l1,l2-1)+f(r1+1,l2-1)。这里为什么不用靠左的区间来减1呢?因为当靠左的区间为1时,减1会到0的位置,所以不方便操作,这个公式可以在草稿上画一下线段区间图就了解了。然后就是莫队的操作了。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define F(i,a,b) for(int i=a;i<=b;i++)
using namespace std; const int N=(int)3e4+;
int sqr,n,a[N],m,K,l1,r1,l2,r2,ans[N],cnt[N];
struct dt{
int l,r,id,f;
bool operator<(const dt &b)const{
if(l/sqr==b.l/sqr)return r<b.r;
else return l/sqr<b.l/sqr;
}
}q[N<<]; void modui(){
sqr=(int)sqrt(n+0.5);
sort(q,q+(m<<));
int an=,l=,r=;
F(i,,(m<<)-){
while(r<q[i].r){
r++;
if(K>a[r]&&K-a[r]<=n)an+=cnt[K-a[r]];
cnt[a[r]]++;
}
while(r>q[i].r){
cnt[a[r]]--;
if(K>a[r]&&K-a[r]<=n)an-=cnt[K-a[r]];
r--;
}
while(l<q[i].l){
cnt[a[l]]--;
if(K>a[l]&&K-a[l]<=n)an-=cnt[K-a[l]];
l++;
}
while(l>q[i].l){
l--;
if(K>a[l]&&K-a[l]<=n)an+=cnt[K-a[l]];
cnt[a[l]]++;
}
ans[q[i].id]+=an*q[i].f;
}
} int main(){
while(~scanf("%d",&n)){
scanf("%d",&K);
F(i,,n)scanf("%d",a+i),cnt[i]=;
scanf("%d",&m);
F(i,,m-){
scanf("%d%d%d%d",&l1,&r1,&l2,&r2),ans[i]=;
q[(i<<)].l=l1,q[(i<<)].r=r2,q[(i<<)].id=i,q[(i<<)].f=;
q[(i<<)+].l=l1,q[(i<<)+].r=l2-,q[(i<<)+].id=i,q[(i<<)+].f=-;
q[(i<<)+].l=r1+,q[(i<<)+].r=r2,q[(i<<)+].id=i,q[(i<<)+].f=-;
q[(i<<)+].l=r1+,q[(i<<)+].r=l2-,q[(i<<)+].id=i,q[(i<<)+].f=;
}
modui();
F(i,,m-)printf("%d\n",ans[i]);
}
return ;
}
hdu_5213_Lucky(莫队算法+容斥定理)的更多相关文章
- Lucky HDU - 5213 (莫队,容斥)
WLD is always very lucky.His secret is a lucky number . is a fixed odd number. Now he meets a strang ...
- HDU5213(容斥定理+莫队算法)
传送门 题意 给出n个数和幸运数k,m次询问,每次询问[l1,r1]和[l2,r2]有多少对数满足x+y=k,x∈[l1,r1],y∈[l2,r2] 分析 看到m只有3e4,可以考虑\(m\sqrt{ ...
- 51nod1284容斥定理
1284 2 3 5 7的倍数 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 给出一个数N,求1至N中,有多少个数不是2 3 5 7的倍数. 例如N = 10, ...
- 【hdu4135】【hdu2841】【hdu1695】一类通过容斥定理求区间互质的方法
[HDU4135]Co-prime 题意 给出三个整数N,A,B.问在区间[A,B]内,与N互质的数的个数.其中N<=10^9,A,B<=10^15. 分析 容斥定理的模板题.可以通过容斥 ...
- NBUT 1457 莫队算法 离散化
Sona Time Limit:5000MS Memory Limit:65535KB 64bit IO Format: Submit Status Practice NBUT 145 ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 7687 Solved: 3516[Subm ...
- NPY and girls-HDU5145莫队算法
Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Description ...
- Codeforces617 E . XOR and Favorite Number(莫队算法)
XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...
- Bzoj 2038---[2009国家集训队]小Z的袜子(hose) 莫队算法
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色 ...
随机推荐
- java实现树型结构样式
import javax.swing.*; import javax.swing.event.*; import javax.swing.tree.*; public class Root exten ...
- KVM 虚拟机基本管理及常用命令
KVM的基本管理 1.查看KVM虚拟机配置文件 #Kvm虚拟机默认配置文件位置 [root@kvm qemu]# pwd /etc/libvirt/qemu [root@kvm qemu]# ll t ...
- POJ 3419 Difference Is Beautiful
先处理出每一个i位置向左最远能到达的位置L[i].每一次询问,要找到L,R区间中的p位置,p位置左边的L[i]都是小于L的,p位置开始,到R位置,L[i]都大于等于L,对于前者,最大值为p-L,后者求 ...
- 第十九节,基本数据类型,集合set
集合set,无序,是不允许重复内容的,也就是不允许重复元素,如果有重复,会自动忽略,可接收可迭代类型 (一般用于需要判断和处理交集时候用到) 集合与字典的区别是,集合没有键只有值,字典是有键的字典是一 ...
- Java語言
Java编程语言是个简单.完全面向对象.分布式.解释性.健壮.安全与系统无关.可移植.高性能.多线程和动态的编程语言. Java可以撰写跨平台应用软件,是有Sun Microsystems公司于199 ...
- js 学习总结
new array()[] []表示数组new object(){} {}表示对象 JavaScript 对象 对象由花括号分隔.在括号内部,对象的属性以名称和值对的形式 (name : value) ...
- hdu_5676_ztr loves lucky numbers
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5676 在这%一下安神,用了我没见过的黑科技next_permutation,至少我是今天才知道的 #i ...
- swap in java?
Is it possible to write a swap method in java? these two variables will be primitives. It's not poss ...
- Uploadify自定义提示信息
Uploadify是一款基于Jquery的上传插件,用起来很方便.但上传过程中的提示语言为英文,这里整理下如何修改英文为中文提示.方法1:直接修改uploadify.js中的提示信息,将英文提示改成对 ...
- Linux启动流程详解【转载】
在BIOS阶段,计算机的行为基本上被写死了,可以做的事情并不多:一般就是通电.BIOS.主引导记录.操作系统这四步.所以我们一般认为加载内核是linux启动流程的第一步. 第一步.加载内核 操作系统接 ...