知识储备

扩展欧几里得定理

欧几里得定理

(未掌握的话请移步[扩展欧几里得])

正题

设存在ax+by=gcd(a,b),求x,y。
我们已经知道了用扩欧求解的方法是递归,终止条件是x==1,y==0;

int exgcd( int a, int b, int &x, int &y ) {
if( b == ) {
x = ;
y = ;
return a;
}
int tmp = a % b;
if( tmp > b ) swap( tmp, b );
int ans=exgcd(b,a%b,x,y);
tmp = x;
x = y;
y = tmp - a / b * y;
return ans;
}

到b==0时,我们可以得到一组解:(1,0)。
接下来再逐步回带,求出所有可能的解。具体是为什么呢?

证明

已知:

ax1+by1=gcd(a,b)
bx2+(a mod b)y2=gcd(a,b)
a mod b = a-a/b*b

可求得:
ax1+by1=bx2+(a mod b)y2=gcd(a,b)

ax1+by1=bx2+(a-a/b*b)y2=gcd(a,b)
化简得
ax1+by1=bx2+ay2-a/b*b*y2=gcd(a,b)
所以可证出:
对于每一次递归中的x1y1,与上一次递归中的x2y2存在如下关系:
x1 = y2,y1 = x2 - a / b * y2

证明毕,
每次的x和y均存在递归关系,所以我们可以在求得一组解后回溯时回带求出其他解,此时计数

P.S.

对于求方程正整数解的个数的题,需要注意特判
设ax+by=c,给定a,b,c,求x,y的正整数解个数

x=0,y=0,z=0时,方程无数解
x=0,y=0,z!=0时,方程无解
x,y<0,z>0时方程无解,反之亦然

exgcd扩展欧几里得求解的个数的更多相关文章

  1. POJ - 2142 The Balance(扩展欧几里得求解不定方程)

    d.用2种砝码,质量分别为a和b,称出质量为d的物品.求所用的砝码总数量最小(x+y最小),并且总质量最小(ax+by最小). s.扩展欧几里得求解不定方程. 设ax+by=d. 题意说不定方程一定有 ...

  2. EXGCD 扩展欧几里得

    推荐:https://www.zybuluo.com/samzhang/note/541890 扩展欧几里得,就是求出来ax+by=gcd(x,y)的x,y 为什么有解? 根据裴蜀定理,存在u,v使得 ...

  3. 青蛙的约会(exgcd/扩展欧几里得)

    题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清 ...

  4. 扩展欧几里得求解同余方程(poj 1061)

    设方程 ax + by = c , 若 gcd(a,b) 是 c的因子(记作gcd(a,b)|c)则方程有解,反之无解. 其中x0,y0是方程的一组特解 , d = gcd(a,b), poj1061 ...

  5. 【数论】【扩展欧几里得】Codeforces 710D Two Arithmetic Progressions

    题目链接: http://codeforces.com/problemset/problem/710/D 题目大意: 两个等差数列a1x+b1和a2x+b2,求L到R区间内重叠的点有几个. 0 < ...

  6. 【Luogu】P1516青蛙的约会(线性同余方程,扩展欧几里得)

    题目链接 定理:对于方程\(ax+by=c\),等价于\(a*x=c(mod b)\),有整数解的充分必要条件是c是gcd(a,b)的整数倍. ——信息学奥赛之数学一本通 避免侵权.哈哈. 两只青蛙跳 ...

  7. SGU 140 扩展欧几里得

    题目大意: 给定序列a[] , p , b 希望找到一个序列 x[] , 使a1*x1 + a2*x2 + ... + an*xn = b (mod p) 这里很容易写成 a1*x1 + a2*x2 ...

  8. POJ2115 C Looooops 模线性方程(扩展欧几里得)

    题意:很明显,我就不说了 分析:令n=2^k,因为A,B,C<n,所以取模以后不会变化,所以就是求(A+x*C)%n=B 转化一下就是求 C*x=B-A(%n),最小的x 令a=C,b=B-A ...

  9. UVA 12169 Disgruntled Judge 扩展欧几里得

    /** 题目:UVA 12169 Disgruntled Judge 链接:https://vjudge.net/problem/UVA-12169 题意:原题 思路: a,b范围都在10000以内. ...

随机推荐

  1. 使用JavaScript开发IE浏览器本地插件实例

    使用JavaScript开发IE浏览器本地插件实例 投稿:junjie 字体:[增加 减小] 类型:转载 时间:2015-02-18我要评论 这篇文章主要介绍了使用JavaScript开发IE浏览器本 ...

  2. 【转】MySQL随机字符串生成

    DROP FUNCTION IF EXISTS rand_string; DELIMITER $$ CREATE FUNCTION rand_string(str_length TINYINT UNS ...

  3. 获取SD卡中的音乐文件

    小编近期在搞一个音乐播放器App.练练手: 首先遇到一个问题.怎么获取本地的音乐文件? /** * 获取SD卡中的音乐文件 * * @param context * @return */ public ...

  4. CAGradientLayer功能

    一.CAGradientLayer介绍 .CAGradientLayer是用于处理渐变色的层结构 .CAGradientLayer的渐变色能够做隐式动画 .大部分情况下.CAGradientLayer ...

  5. IP V4 和 IP V6 初识

    IP V4    是互联网协议的第四版 地址长度为32位,4字节,用十进制表示 格式为:A.B.C.D 最大的问题在于网络地址资源有限,严重制约了互联网的应用和发展 IP V6    是互联网协议的I ...

  6. AbstractRoutingDataSource动态选择数据源

    当我们项目变大后,有时候需要多个数据源,接下来我们讲一种能等动态切换数据源的例子. 盗一下图: 单数据源的场景(一般的Web项目工程这样配置进行处理,就已经比较能够满足我们的业务需求) 多数据源多Se ...

  7. [Swift通天遁地]四、网络和线程-(10)处理图片:压缩、缩放、圆角、CoreImage滤镜、缓存

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  8. android 蓝牙 通信 bluetooth

    此例子基于 android demo Android的蓝牙开发,虽然不多用,但有时还是会用到,  Android对于蓝牙开发从2.0版本的sdk才开始支持,而且模拟器不支持,测试需要两部手机:     ...

  9. vs项目结构解析

    当我们用VS开发一个项目的时候,首先应该清楚用VS这个IDE生成的一些文件和文件夹是什么意思,起什么作用,什么场合下使用. 因为我使用的是VS2015,就以这个为例来进行一些说明: 首先要做的是更改你 ...

  10. 【反射】Java反射机制

    Class 1.Class是一个类,一个描述类的类(也就是描述类本身),封装了描述方法的Method,描述字段的Filed,描述构造器的Constructor等属性    2.对象照镜子后(反射)可以 ...