POJ 2104为例(主席树入门题)

思想:

可持久化线段树,也叫作函数式线段树,也叫主席树(高大上)。

可持久化数据结构(Persistent data structure):利用函数式编程的思想使其支持询问历史版本、同时充分利用它们之间的共同数据来减少时间和空间消耗。

主席树:对原序列的每一个前缀[1..i]建立出一棵线段树维护值域上每个数的出现次数(所以要先离散化)。线段树每个节点保存的是区间中前缀对应的出现的次数

注意:

  • 这里没有使用指针,而是给每个节点编号,通过编号来将节点与左右子节点连接起来。
  • 对于前缀[1,i]和前缀[1,i+1]的线段树,如果离散化后newa[i+1]<=mid ,那么这两棵线段树的右边是完全相同的,不需要重复建立。
  • 查询过程,先查看左子树中元素的出现次数是否大于k,如果是,继续查左子树,反之查询右子树。
  • 同一区间出现次数可以直接相减得到。

代码:

#include<cstdio>
#include<algorithm>
using namespace std;//[]
const int maxn = 100010, maxm = 20 * maxn;
int tot, c;
int a[maxn], newa[maxn];
int lson[maxm], rson[maxm], t[maxm], tree[maxm];
//lson,rson记录左右节点标号,t记录每一个前缀构成的线段树的根节点标号,tree记录标号对应区间中数字出现次数
int compress(int x)//离散化
{
return lower_bound(newa+1, newa+1+c, x) - newa;
}
int build(int l, int r)
{
int root = tot++; tree[root] = 0;
int mid = (l+r)/2;
if(l == r ) return root;
lson[root] = build(l, mid);
rson[root] = build(mid + 1, r);
return root;
}
void update(int root, int newroot, int l, int r, int num)
{
tree[newroot] = tree[root] + 1;
if(l == r) return;
int mid = (l + r)/2;
if(num <= mid){
lson[newroot] = tot++;//有变动,重新建立
rson[newroot] = rson[root];//右边不变
update( lson[root], lson[newroot], l, mid, num);
}else{
rson[newroot] = tot++;//有变动,重新建立
lson[newroot] = lson[root];//左边不变
update(rson[root], rson[newroot], mid + 1, r, num);
}
}
int query(int leftroot, int rightroot, int l, int r, int k)
{
if(l == r ) return l;
int mid = (l + r)/2;
if(tree[lson[rightroot]] - tree[lson[leftroot]] >= k){
query(lson[leftroot], lson[rightroot], l, mid, k);
}else{
int temp = tree[lson[rightroot]] - tree[lson[leftroot]];
query(rson[leftroot], rson[rightroot], mid + 1, r, k - temp);
}
}
int main (void)
{
int n,m;scanf("%d%d",&n,&m);
tot = 0;
for(int i = 1; i <= n; i++) {
scanf("%d",&a[i]);
newa[i] = a[i];
}
sort(newa+1, newa+1+n);
c = unique(newa+1, newa+1+n) - newa-1;//去重
t[0] = build(1, c);//初始化
for(int i = 1; i <= n; i++){
t[i] = tot++;
update(t[i-1], t[i], 1 , c, compress(a[i]));//不断更新,建树
}
int l, r, k;
while(m--){
scanf("%d%d%d",&l,&r,&k);
printf("%d\n", newa[query(t[l-1], t[r], 1 ,c, k)]);
}
return 0;
}//1800ms

还是划分树快些。。。

真的是理解花了好久,连写再调试又花了好久。。。。。。然而只学了点毛皮。

动态区间第k大貌似要用到树状数组,过几天再来研究一下!

静态区间第k大(主席树)的更多相关文章

  1. HDU2665 求区间第K大 主席树

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2665 代码: //#include<bits/stdc++.h> #include< ...

  2. POJ-2104-K-th Number(区间第K大+主席树模板题)

    Description You are working for Macrohard company in data structures department. After failing your ...

  3. poj2104&&poj2761 (主席树&&划分树)主席树静态区间第k大模板

    K-th Number Time Limit: 20000MS   Memory Limit: 65536K Total Submissions: 43315   Accepted: 14296 Ca ...

  4. 可持久化线段树(主席树)——静态区间第k大

    主席树基本操作:静态区间第k大 #include<bits/stdc++.h> using namespace std; typedef long long LL; ,MAXN=2e5+, ...

  5. 主席树(静态区间第k大)

    前言 如果要求一些数中的第k大值,怎么做? 可以先就这些数离散化,用线段树记录每个数字出现了多少次. ... 那么考虑用类似的方法来求静态区间第k大. 原理 假设现在要有一些数 我们可以对于每个数都建 ...

  6. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  7. 静态区间第k大(归并树)

    POJ 2104为例 思想: 利用归并排序的思想: 建树过程和归并排序类似,每个数列都是子树序列的合并与排序. 查询过程,如果所查询区间完全包含在当前区间中,则直接返回当前区间内小于所求数的元素个数, ...

  8. HDU3473--Minimum Sum(静态区间第k大)

    Minimum Sum Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  9. 主席树学习笔记(静态区间第k大)

    题目背景 这是个非常经典的主席树入门题——静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个整数构成的序列,将对于指定的闭区间查询其区间内的第K小值. 输入输出 ...

  10. HDU 2665 Kth number(主席树静态区间第K大)题解

    题意:问你区间第k大是谁 思路:主席树就是可持久化线段树,他是由多个历史版本的权值线段树(不是普通线段树)组成的. 具体可以看q学姐的B站视频 代码: #include<cmath> #i ...

随机推荐

  1. 自动判断手机版和pc版

    <html><head><title>欢迎来到手机版</title><script>var ua = navigator.userAgent ...

  2. Java实现求二叉树的路径和

    题: 解: 这道题考的是如何找出一个二叉树里所有的序列. 我的思路是先从根节点开始遍历,找出所有的子节点,因为每个子节点只有一个父节点,再根据每个子节点向上遍历找出所有的序列,再判断序列的总和. 这样 ...

  3. Effective Java读书笔记完结啦

    Effective Java是一本经典的书, 很实用的Java进阶读物, 提供了各个方面的best practices. 最近终于做完了Effective Java的读书笔记, 发布出来与大家共享. ...

  4. Android 中保存数据到文件中

    1.在安卓开发中,会遇到保存数据到手机中以及从手机中获取数据的情况 /** * 把数据存放到手机内存中 * * @param number * @param password * @return */ ...

  5. php接收json格式数据(text/xml)

    在API服务中,目前流行采用json形式来交互. 给前端调用的接口输出Json数据,这个比较简单,只需要组织好数据,用json_encode($array) 转化一下,前端就得到json格式的数据. ...

  6. 【PostgreSQL-9.6.3】Red Hat 4.4.7下的安装

    1. 下载源码包https://www.postgresql.org/ftp/source/v9.6.1/ 2. 上传到/opt目录下 3. 创建postgres用户及dba组,并修改压缩包的属主属组 ...

  7. UVALive 4128 Steam Roller 蒸汽式压路机(最短路,变形) WA中。。。。。

    题意: 给一个由n*m个正方形格子组成的矩形,其中每个格子的边都是可以走的,长度给定,规定:如果在进入该路前需要拐弯,或者走完该路需要拐弯,都是需要付出双倍距离的(每条路最多算2倍).问从起点到终点的 ...

  8. matlab中数据类型

    在MATLAB中有15种基本数据类型,分别是8种整型数据.单精度浮点型.双精度浮点型.逻辑型.字符串型.单元数组.结构体类型和函数句柄.这15种基本数据类型具体如下. 有符号整数型:int8,int1 ...

  9. [转]c++应用程序文件的编译过程

    原文地址 这里讲下C++文件的编译过程及其中模板的编译过程: 一:一般的C++应用程序的编译过程.    一般说来,C++应用程序的编译过程分为三个阶段.模板也是一样的. 在cpp文件中展开inclu ...

  10. CAD控件,CAD插件使用教程:Android开发使用控件--开发环境的搭建

    Android开发使用控件入门--环境搭建 2014-12-24 09:57     14人阅读     评论(0)     收藏         编辑     删除 CAD控件.CAD三维控件,手机 ...