"Fat and docile, big and dumb, they look so stupid, they aren't much 
fun..." 
- Cows with Guns by Dana Lyons

The cows want to prove to the public that they are both smart and fun. In order to do this, Bessie has organized an exhibition that will be put on by the cows. She has given each of the N (1 <= N <= 100) cows a thorough interview and determined two values for each cow: the smartness Si (-1000 <= Si <= 1000) of the cow and the funness Fi (-1000 <= Fi <= 1000) of the cow.

Bessie must choose which cows she wants to bring to her exhibition. She believes that the total smartness TS of the group is the sum of the Si's and, likewise, the total funness TF of the group is the sum of the Fi's. Bessie wants to maximize the sum of TS and TF, but she also wants both of these values to be non-negative (since she must also show that the cows are well-rounded; a negative TS or TF would ruin this). Help Bessie maximize the sum of TS and TF without letting either of these values become negative.

Input

* Line 1: A single integer N, the number of cows

* Lines 2..N+1: Two space-separated integers Si and Fi, respectively the smartness and funness for each cow.

Output

* Line 1: One integer: the optimal sum of TS and TF such that both TS and TF are non-negative. If no subset of the cows has non-negative TS and non- negative TF, print 0.

Sample Input

5
-5 7
8 -6
6 -3
2 1
-8 -5

Sample Output

8

Hint

OUTPUT DETAILS:

Bessie chooses cows 1, 3, and 4, giving values of TS = -5+6+2 = 3 and TF 
= 7-3+1 = 5, so 3+5 = 8. Note that adding cow 2 would improve the value 
of TS+TF to 10, but the new value of TF would be negative, so it is not 
allowed. 

题目大意:
给定n头牛的TS值和TF值,求最大的TS+TF值,前提是TS的和与TF的和不为负数。
由于有负数,所以整体移动1e5,即1e5相当于0。
#include <iostream>
#include <cstring>
using namespace std;
const int INF=0x3f3f3f3f;
const int mid=1e5;
int dp[],s[],f[];
int main()
{
int n;
cin>>n;
for(int i=;i<=n;i++)
cin>>s[i]>>f[i];
fill(dp,dp+,-INF);
dp[mid]=;
for(int i=;i<=n;i++)
{
if(s[i]>)
{
for(int j=;j>=s[i];j--)
dp[j]=max(dp[j],dp[j-s[i]]+f[i]);
}
else
{
for(int j=;j-s[i]<;j++) ///j-s[i]>j因此递增
dp[j]=max(dp[j],dp[j-s[i]]+f[i]);
}
}
int ans=;
for(int i=mid;i<;i++)
if(dp[i]>=)
ans=max(ans,dp[i]+i-mid);
cout<<ans<<'\n';
return ;
}

Cow Exhibition (01背包)的更多相关文章

  1. [POJ 2184]--Cow Exhibition(0-1背包变形)

    题目链接:http://poj.org/problem?id=2184 Cow Exhibition Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  2. POJ-2184 Cow Exhibition(01背包变形)

    Cow Exhibition Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10949 Accepted: 4344 Descr ...

  3. POJ 2184 Cow Exhibition (01背包变形)(或者搜索)

    Cow Exhibition Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10342   Accepted: 4048 D ...

  4. POJ 2184 Cow Exhibition (01背包的变形)

    本文转载,出处:http://www.cnblogs.com/Findxiaoxun/articles/3398075.html 很巧妙的01背包升级.看完题目以后很明显有背包的感觉,然后就往背包上靠 ...

  5. POJ 2184 Cow Exhibition 01背包

    题意就是给出n对数 每对xi, yi 的值范围是-1000到1000 然后让你从中取若干对 使得sum(x[k]+y[k]) 最大并且非负   且 sum(x[k]) >= 0 sum(y[k] ...

  6. PKU 2184 Cow Exhibition 01背包

    题意: 有一些牛,每头牛有一个Si值,一个Fi值,选出一些牛,使得max( sum(Si+Fi) ) 并且 sum(Si)>=0, sum(Fi)>=0 思路: 随便选一维做容量(比如Fi ...

  7. poj 2184 Cow Exhibition(背包变形)

    这道题目和抢银行那个题目有点儿像,同样涉及到包和物品的转换. 我们将奶牛的两种属性中的一种当作价值,另一种当作花费.把总的价值当作包.然后对于每一头奶牛进行一次01背包的筛选操作就行了. 需要特别注意 ...

  8. Cow Exhibition 变种背包

    Cow Exhibition Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Subm ...

  9. Cow Exhibition (背包中的负数问题)

    个人心得:背包,动态规划真的是有点模糊不清,太过于抽象,为什么有些是从后面递推, 有些状态就是从前面往后面,真叫人头大. 这一题因为涉及到负数,所以网上大神们就把开始位置从10000开始,这样子就转变 ...

  10. POJ 2184 Cow Exhibition(背包)

    希望Total Smart和Totol Funess都尽量大,两者之间的关系是鱼和熊掌.这种矛盾和背包的容量和价值相似. dp[第i只牛][j = 当前TotS] = 最大的TotF. dp[i][j ...

随机推荐

  1. webfrom ASP开发基础跟模式

    ASP.NET - .net开发网站应用程序的技术总称 ASP WebForm           MVC   是ASP.NET的两个技术方法 WebForm类似于WinForm,可视化操作 MVC类 ...

  2. 【学习笔记】后端中的MVC和前端MVVM的关系

  3. Android自定义zxing扫描界面的实现

    首先,我们需要导入zxing的jar文件,其次复制所需要的资源文件以及放入自己需要添加的资源文件,复制出源码的必要相关类文件.对布局文件进行一定的修改,再修改CaptureActivity与Viewf ...

  4. Android学习笔记(十八) Socket

    Socket在计算机网络中的概念是指套接字,包含IP地址和端口号.在Java编程中Socket是一个类,用来实现数据传输(同样可以理解为“套接字”).传输的协议包括UDP和TCP,前者为不可靠的无连接 ...

  5. innerHTML与IE浏览器内存泄露问题

    使用 sIEve 扫描和筛选 如果大量使用 JavaScript 和 Ajax 技术开发 Web 2.0 应用程序,您很有可能会遇到浏览器的内存泄漏问题.如果您有一个单页应用程序或者一个页面要处理很多 ...

  6. javascript动态添加、修改、删除对象的属性与方法

    在其他语言中,对象一旦生成,就不可更改了,要为一个对象添加修改成员必须要在对应的类中修改,并重新实例化,而且程序必须经过重新编译.JavaScript 中却非如此,它提供了灵活的机制来修改对象的行为, ...

  7. 在windows上安装Jenkins---tomcat流

    在windows上安装Jenkins有两种方式: (1)jar流 在命令行中运行:java -jar jenkins.war 浏览器访问 localhost:8080,创建初始管理员帐号即可. (2) ...

  8. MongoDB最简单的入门教程之四:使用Spring Boot操作MongoDB

    Spring Boot 是一个轻量级框架,可以完成基于 Spring 的应用程序的大部分配置工作.Spring Boot的目的是提供一组工具,以便快速构建容易配置的Spring应用程序,省去大量传统S ...

  9. 微信小程序开发系列四:微信小程序之控制器的初始化逻辑

    微信小程序开发系列教程 微信小程序开发系列一:微信小程序的申请和开发环境的搭建 微信小程序开发系列二:微信小程序的视图设计 微信小程序开发系列三:微信小程序的调试方法 这个教程的前两篇文章,介绍了如何 ...

  10. 尺取法 || emmmm

    给定两个上升的数组,一个数组任取一个数,求两个数差的min 尺取法emm 也不知道对不对 #include <stdio.h> #include <stdlib.h> #def ...