2019牛客多校E Androgynos——自补图&&构造
题目
给出一个 $n$,判断是否存在 $n$ 个顶点的自补图,如果存在,输出边和映射。
分析
一个无向图若同构于它的补图,则称该图为自补图。
定理:一个自补图一定存在 $4k$ 或 $4k+1$ 个顶点.
证:
原图的边数+补图的边数=完全图的边数=n(n-1)/2
由于原图与补图同构,所以边数相等,
所以,原图的边数=n(n-1)/4,
边数肯定为整数,所以 4|n 或者 4|(n+1).
现在的问题是如何构造呢?
先考虑 $n=4k$,将其分成两半,
一半连接成完全图,一半为独立的点,
这样边数还不够,再将左上和右下一一相连,右上和左下一一相连。
很容易发现其补图变形一下就跟它一样,然后找一下对应关系。

#include<bits/stdc++.h>
using namespace std; int n; int main()
{
int T, kase=;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
printf("Case #%d: ", ++kase);
if(n % == )
{
printf("Yes\n");
int k = n/;
for(int i = ; i<= k;i++)
{
for(int j = ; j <= *k;j++)
{
if(j == i) printf("");
else printf("");
}
for(int j = *k+;j <= *k;j++) printf("");
for(int j = *k+;j <= *k;j++) printf("");
printf("\n");
}
for(int i = k+;i <= *k;i++)
{
for(int j = ; j <= *k;j++)
{
if(j == i) printf("");
else printf("");
}
for(int j = *k+;j <= *k;j++) printf("");
for(int j = *k+;j <= *k;j++) printf("");
printf("\n");
}
for(int i = *k+;i <= *k;i++)
{
for(int j = ;j <= k;j++) printf("");
for(int j = k+;j <= *k;j++) printf("");
for(int j = *k+;j <= *k;j++) printf("");
printf("\n");
}
for(int i = *k+;i <= *k;i++)
{
for(int j = ;j <= k;j++) printf("");
for(int j = k+;j <= *k;j++) printf("");
for(int j = *k+;j <= *k;j++) printf("");
printf("\n");
}
for(int i = *k;i >= *k+;i--) printf("%d ", i);
for(int i = *k;i >= *k+;i--) printf("%d ", i);
for(int i = k;i >= ;i--) printf("%d ", i);
for(int i = *k;i >= k+;i--) printf("%d%c", i, i == k+? '\n':' ');
}
else if(n % == )
{
printf("Yes\n");
int k = n/;
for(int i = ; i<= k;i++)
{
for(int j = ; j <= *k;j++)
{
if(j == i) printf("");
else printf("");
}
for(int j = *k+;j <= *k;j++) printf("");
for(int j = *k+;j <= *k;j++) printf("");
printf("1\n");
}
for(int i = k+;i <= *k;i++)
{
for(int j = ; j <= *k;j++)
{
if(j == i) printf("");
else printf("");
}
for(int j = *k+;j <= *k;j++) printf("");
for(int j = *k+;j <= *k;j++) printf("");
printf("1\n");
}
for(int i = *k+;i <= *k;i++)
{
for(int j = ;j <= k;j++) printf("");
for(int j = k+;j <= *k;j++) printf("");
for(int j = *k+;j <= *k;j++) printf("");
printf("0\n");
}
for(int i = *k+;i <= *k;i++)
{
for(int j = ;j <= k;j++) printf("");
for(int j = k+;j <= *k;j++) printf("");
for(int j = *k+;j <= *k;j++) printf("");
printf("0\n");
}
for(int i = ;i <= *k;i++) printf("");
for(int i = *k+;i <= *k+;i++) printf("");
printf("\n"); for(int i = *k;i >= *k+;i--) printf("%d ", i);
for(int i = *k;i >= *k+;i--) printf("%d ", i);
for(int i = k;i >= ;i--) printf("%d ", i);
for(int i = *k;i >= k+;i--) printf("%d ", i);
printf("%d\n", *k+);
}
else
{
printf("No\n");
}
}
}
2019牛客多校E Androgynos——自补图&&构造的更多相关文章
- 2019牛客多校第一场 I  Points Division(动态规划+线段树)
		
2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...
 - 2019牛客多校第二场 A  Eddy Walker(概率推公式)
		
2019牛客多校第二场 A Eddy Walker(概率推公式) 传送门:https://ac.nowcoder.com/acm/contest/882/A 题意: 给你一个长度为n的环,标号从0~n ...
 - 2019牛客多校第八场 F题 Flowers 计算几何+线段树
		
2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...
 - 2019牛客多校 Round4
		
Solved:3 Rank:331 B xor 题意:5e4个集合 每个集合最多32个数 5e4个询问 询问l到r个集合是不是都有一个子集的xor和等于x 题解:在牛客多校第一场学了线性基 然后这个题 ...
 - 2019牛客多校第一场E ABBA(DP)题解
		
链接:https://ac.nowcoder.com/acm/contest/881/E 来源:牛客网 ABBA 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语 ...
 - 2019牛客多校第四场 I题 后缀自动机_后缀数组_求两个串de公共子串的种类数
		
目录 求若干个串的公共子串个数相关变形题 对一个串建后缀自动机,另一个串在上面跑同时计数 广义后缀自动机 后缀数组 其他:POJ 3415 求两个串长度至少为k的公共子串数量 @(牛客多校第四场 I题 ...
 - 2019牛客多校第四场 A meeting
		
链接:https://ac.nowcoder.com/acm/contest/884/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语言10485 ...
 - [2019牛客多校第二场][G. Polygons]
		
题目链接:https://ac.nowcoder.com/acm/contest/882/G 题目大意:有\(n\)条直线将平面分成若干个区域,要求处理\(m\)次询问:求第\(q\)大的区域面积.保 ...
 - 2019 牛客多校第一场 D Parity of Tuples
		
题目链接:https://ac.nowcoder.com/acm/contest/881/D 看此博客之前请先参阅吕凯飞的论文<集合幂级数的性质与应用及其快速算法>,论文中很多符号会被本文 ...
 
随机推荐
- 解决RabbitMQ消息丢失问题和保证消息可靠性(一)
			
原文链接(作者一个人):https://juejin.im/post/5d468591f265da03b810427e 工作中经常用到消息中间件来解决系统间的解耦问题或者高并发消峰问题,但是消息的可靠 ...
 - Java的设计模式(4)--抽象工厂模式
			
提供一个创建一系列或相互依赖对象的接口,而无须指定他们具体的类.例如某些系统可能需要为用户提供一系列相关对象,但系统不希望用户直接使用new运算符实例化这些对象,而是应当由系统来控制这些对象的创建,否 ...
 - dict字典
			
dict字典 字典的概述 • 概述:使⽤键-值(key-value)⽅式存储. • key的特点: • 1.字典中的key必须是唯⼀的 • 2.key值必须是不可变的数据类型:字符串.元组.Numbe ...
 - python 虚拟环境 venv 简单用法
			
Python3.3以上的版本通过venv模块原生支持虚拟环境,可以代替Python之前的virtualenv.该venv模块提供了创建轻量级“虚拟环境”,提供与系统Python的隔离支持.每一个虚拟环 ...
 - SAS学习笔记31 SAS随机分组方法及实现
			
随机分组方法包括: 简单随机化(simple randomization) 区组随机化(block randomization) 分层随机化(stratified randomization) 分层区 ...
 - hdu 5230 整数划分 dp
			
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5230 题意:给定n,c,l,r.求有多少种方法从1~n-1选取任意k数每个数的权重为其下标,使得这些数字之 ...
 - Entity Framewrok Migration 重置
			
转载自:https://weblog.west-wind.com/posts/2016/jan/13/resetting-entity-framework-migrations-to-a-clean- ...
 - .NET CORE 下 MariaDB DBfirst 生成model层 并配置连接参数
			
1.首先新建一个类库,然后通过NuGet安装下面三个包 2.然后在程序包管理器控制台中运行以下代码(ps:记得默认项目选择刚才新建的项目,同时设置为启动项) server 是服务器地址 databas ...
 - Django rest-framework框架-组件之渲染器
			
渲染器: from rest_framework.renderers import BrowsableAPIRenderer,AdminRenderer,HTMLFormRenderer,JSONRe ...
 - C++ ifstream ofstream 注意事项
			
很久没写C++,已经完全不会写了... 在使用ifstream读取一个二进制文件时,发现读取的内容和源文件不相同,导致数据解析失败,于是尝试把用ifstream读取的内容用ofstream写入另一个文 ...