首先,这道题正解的思路是从subtask2而得来的,所以先讲一下subtask2的做法。

因为保证答案不超过long long,所以直接求最大权独立集即可:dp[u][0]表示u点一定不能取的答案,dp[u][1]表示u点对儿子没有限制的答案。

\(dp[u][0]=max(dp[v][0],dp[v][1])\)

\(dp[u][1]=max(dp[u][1],val[u]*\prod dp[v][0])\)

直接跑DP即可。

而正解是怎么做的呢?

想到乘法,可以将其转化为对数,每次乘法就相当于对数相加,这个就可以计算出怎样选取这个最大权独立集,再跑一遍深搜统计答案即可。

//这里的dp的都是对数,所以只用相加即可
void dfs(int u,int fa)
{
dp[u][0]=dp[u][1]=0;
for(int i=head[u];i;i=nxt[i])
{
int v=to[i];
if(v!=fa)
{
dfs(v,u);
dp[u][0]+=max(dp[v][0],dp[v][1]);
dp[u][1]+=dp[v][0];
}
}
dp[u][1]+=logv[u];
}
\\统计答案的时候通过已经求出来的dp来作决策

\\如果u本身被选,肯定儿子不可选

\\如果u本身没有被选,判断儿子选更优还是不选更优。

\\选的话要乘上val

long long dfs1(int u,int fa,int yes)
{
long long ans=1;
for(int i=head[u];i;i=nxt[i])
{
int v=to[i];
if(v!=fa)
{
if(yes)
{
ans=(ans*dfs1(v,u,0))%mod;
}else{
if(dp[v][0]>dp[v][1])
{
ans=(ans*dfs1(v,u,0))%mod;
}else{
ans=(ans*dfs1(v,u,1))%mod;
}
}
}
}
if(yes)
{
ans=(ans*val[u])%mod;
}
return ans;
} if(dp[1][0]>dp[1][1])
{
printf("%lld\n",dfs1(1,-1,0));
}else{
printf("%lld\n",dfs1(1,-1,1));
}

【CSP模拟】小凯的疑惑(DP)的更多相关文章

  1. 洛谷 P3951 小凯的疑惑 找规律

    目录 题面 题目链接 题目描述 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例: 输出样例: 说明 思路 证明 AC代码 include<bits/stdc++.h> 题面 ...

  2. 【比赛】NOIP2017 小凯的疑惑

    找规律:ans=a*b-a-b 证明:(可见 体系知识) gcd(A, B) = 1 → lcm(A, B) = AB 剩余类,把所有整数划分成m个等价类,每个等价类由相互同余的整数组成 任何数分成m ...

  3. Luogu [P3951] 小凯的疑惑

    题目详见:[P3951]小凯的疑惑 首先说明:此题为一道提高组的题.但其实代码并没有提高组的水平.主要考的是我们的推断能力,以及看到题后的分析能力. 分析如下: 证明当k>ab-a-b时,小凯可 ...

  4. NOIP 2017 小凯的疑惑

    # NOIP 2017 小凯的疑惑 思路 a,b 互质 求最大不能表示出来的数k 则k与 a,b 互质 这里有一个结论:(网上有证明)不过我是打表找的规律 若 x,y(设x<y) 互质 则 : ...

  5. luogu 3951 小凯的疑惑

    noip2017 D1T1 小凯的疑惑 某zz选手没有看出这道结论题,同时写出了exgcd却不会用,只能打一个哈希表骗了30分 题目大意: 两个互质的正整数a和b,求一个最小的正整数使这个数无法表示为 ...

  6. 2017提高组D1T1 洛谷P3951 小凯的疑惑

    洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...

  7. P3951 小凯的疑惑

    P3951 小凯的疑惑 题解 题意也就是求解不能用 ax+by 表示的最大数 ans(a,b,x,y,都是正整数) 给定 a ( =7 ) ,  b ( =3 ) 我们可以把数轴非负半轴上的数按照a的 ...

  8. luoguP3951 小凯的疑惑/P2662 牛场围栏

    其实就是当年sxy给我讲的墨墨的等式,只是当时比较菜听得似懂非懂. 小凯的疑惑 去年noipday1t1,当时随便猜了个结论结果猜对了,现在瞎证一下,答案是a*b-a-b. 设a为a,b中较小的一个, ...

  9. 题解 P3951 小凯的疑惑

    P3951 小凯的疑惑 数论极菜的小萌新我刚看这题时看不懂exgcd做法的题解,后来在网上找到了一篇博客,感觉代码和推导都更加清新易懂,于是在它的基础上写了题解qwq 分析 两数互质,且有无限个,想到 ...

  10. 洛谷 P3951 NOIP 2017 小凯的疑惑

    洛谷 P3951 NOIP 2017 小凯的疑惑 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付 ...

随机推荐

  1. docker使用 Flannel(etcd+flannel)网络

    一.Flannel网络简介 Flannel是一种基于overlay网络的跨主机容器网络解决方案,也就是将TCP数据包封装在另一种网络包里面进行路由转发和通信,Flannel是CoreOS开发,专门用于 ...

  2. 前端Web浏览器基于Flash如何实时播放监控视频画面(四)之使用videoJs‘拉流’

    本片文章只是起到抛砖引玉的作用,能从头到尾走通就行,并不做深入研究.为了让文章通俗易懂,尽量使用白话描述. 0x001: 下载videoJs 对于Video.js 5.x及更低版本,Flash技术(v ...

  3. java中jsp的EL的定义以及使用

    1.定义: EL(Expression Language) 是为了使JSP写起来更加简单.表达式语言的灵感来自于 ECMAScript 和 XPath 表达式语言,它提供了在 JSP 中简化表达式的方 ...

  4. Spring——注解

    一.IOC注解 1.用于向Spring容器中注入bean: @Component:向Spring容器中注入bean @Repository:用于标注Dao层 @Service:用于标注Service业 ...

  5. Java集合框架系列大纲

    ###Java集合框架之简述 Java集合框架之Collection Java集合框架之Iterator Java集合框架之HashSet Java集合框架之TreeSet Java集合框架之Link ...

  6. Android_(控件)使用Gallery浏览手机上SD卡中图片

    运行截图: (发现后面两张照片是自己自拍,大写的尴尬对图片进行涂鸦了!!!) 程序结构: <?xml version="1.0" encoding="utf-8&q ...

  7. 邻居子系统 之 邻居项创建__neigh_create

    概述 IP层输出数据包会根据路由的下一跳查询邻居项,如果不存在则会调用__neigh_create创建邻居项,然后调用邻居项的output函数进行输出: __neigh_create完成邻居项的创建, ...

  8. GitHub:Youtube

    ylbtech-GitHub:Youtube 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部 1. https://github.com/youtube 2.   ...

  9. 网络通信框架之retrofit

    主页: [https://github.com/square/retrofit](https://github.com/square/retrofit) 注意: 使用Retrofit的前提是**服务器 ...

  10. 阶段3 3.SpringMVC·_03.SpringMVC常用注解_7 ModelAttribute注解

    这个注解可以作用在方法上,也可以作用在参数上 演示 user里面有三个属性, 表单只提交了两个属性.缺少了date属性 date没有获取到值因为也没提交这个值. 下面返回的user对象.上面就会拿到 ...